文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

磷脂组学的成像与编辑

Imaging and Editing the Phospholipidome.

机构信息

Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.

Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States.

出版信息

Acc Chem Res. 2022 Nov 1;55(21):3088-3098. doi: 10.1021/acs.accounts.2c00510. Epub 2022 Oct 24.


DOI:10.1021/acs.accounts.2c00510
PMID:36278840
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9703472/
Abstract

Membranes are multifunctional supramolecular assemblies that encapsulate our cells and the organelles within them. Glycerophospholipids are the most abundant component of membranes. They make up the majority of the lipid bilayer and play both structural and functional roles. Each organelle has a different phospholipid composition critical for its function that results from dynamic interplay and regulation of numerous lipid-metabolizing enzymes and lipid transporters. Because lipid structures and localizations are not directly genetically encoded, chemistry has much to offer to the world of lipid biology in the form of precision tools for visualizing lipid localization and abundance, manipulating lipid composition, and in general decoding the functions of lipids in cells.In this Account, we provide an overview of our recent efforts in this space focused on two overarching and complementary goals: imaging and editing the phospholipidome. On the imaging front, we have harnessed the power of bioorthogonal chemistry to develop fluorescent reporters of specific lipid pathways. Substantial efforts have centered on phospholipase D (PLD) signaling, which generates the humble lipid phosphatidic acid (PA) that acts variably as a biosynthetic intermediate and signaling agent. Though PLD is a hydrolase that generates PA from abundant phosphatidylcholine (PC) lipids, we have exploited its transphosphatidylation activity with exogenous clickable alcohols followed by bioorthogonal tagging to generate fluorescent lipid reporters of PLD signaling in a set of methods termed IMPACT.IMPACT and its variants have facilitated many biological discoveries. Using the rapid and fluorogenic tetrazine ligation, it has revealed the spatiotemporal dynamics of disease-relevant G protein-coupled receptor signaling and interorganelle lipid transport. IMPACT using diazirine photo-cross-linkers has enabled identification of lipid-protein interactions relevant to alcohol-related diseases. Varying the alcohol reporter can allow for organelle-selective labeling, and varying the bioorthogonal detection reagent can afford super-resolution lipid imaging via expansion microscopy. Combination of IMPACT with genome-wide CRISPR screening has revealed genes that regulate physiological PLD signaling.PLD enzymes themselves can also act as tools for precision editing of the phospholipid content of membranes. An optogenetic PLD for conditional blue-light-stimulated synthesis of PA on defined organelle compartments led to the discovery of the role of organelle-specific pools of PA in regulating oncogenic Hippo signaling. Directed enzyme evolution of PLD, enabled by IMPACT, has yielded highly active superPLDs with broad substrate tolerance and an ability to edit membrane phospholipid content and synthesize designer phospholipids in vitro. Finally, azobenzene-containing PA analogues represent an alternative, all-chemical strategy for light-mediated control of PA signaling.Collectively, the strategies described here summarize our progress to date in tackling the challenge of assigning precise functions to defined pools of phospholipids in cells. They also point to new challenges and directions for future study, including extension of imaging and membrane editing tools to other classes of lipids. We envision that continued application of bioorthogonal chemistry, optogenetics, and directed evolution will yield new tools and discoveries to interrogate the phospholipidome and reveal new mechanisms regulating phospholipid homeostasis and roles for phospholipids in cell signaling.

摘要

膜是多功能的超分子组装体,它包裹着我们的细胞和细胞器。甘油磷脂是膜的最丰富成分。它们构成了大部分脂质双层,并发挥结构和功能作用。每个细胞器都有不同的磷脂组成,这对于其功能至关重要,而这些功能源于众多脂质代谢酶和脂质转运蛋白的动态相互作用和调节。由于脂质结构和定位不是直接通过遗传编码的,因此化学在脂质生物学领域提供了很多帮助,提供了用于可视化脂质定位和丰度、操纵脂质组成以及一般解码细胞中脂质功能的精确工具。在本账目中,我们提供了我们在这一领域的最新努力的概述,重点是两个总体上互补的目标:成像和编辑磷脂组。在成像方面,我们利用生物正交化学的力量开发了特定脂质途径的荧光报告物。大量的工作集中在磷脂酶 D (PLD) 信号上,该信号生成不起眼的脂质磷酸酰丝氨酸 (PA),它作为生物合成中间体和信号剂而变化。尽管 PLD 是一种从丰富的磷脂酰胆碱 (PC) 脂质中生成 PA 的水解酶,但我们利用其与外源可点击醇的转磷酸化活性,然后通过生物正交标记生成 PLD 信号的荧光脂质报告物一组称为 IMPACT 的方法。IMPACT 及其变体促成了许多生物学发现。使用快速和荧光四嗪连接,它揭示了与疾病相关的 G 蛋白偶联受体信号和细胞器间脂质转运的时空动态。使用叠氮化物光交联剂的 IMPACT 能够鉴定与酒精相关疾病相关的脂质-蛋白相互作用。改变醇报告物可以实现细胞器选择性标记,改变生物正交检测试剂可以通过扩展显微镜实现超分辨率脂质成像。IMPACT 与全基因组 CRISPR 筛选的结合揭示了调节生理 PLD 信号的基因。PLD 酶本身也可以用作膜磷脂含量的精确编辑工具。用于在定义的细胞器隔室上条件性蓝光刺激合成 PA 的光遗传学 PLD 导致发现细胞器特异性 PA 池在调节致癌 Hippo 信号中的作用。通过 IMPACT 进行的 PLD 定向酶进化产生了高度活跃的超 PLD,具有广泛的底物耐受性,并且能够在体外编辑膜磷脂含量并合成设计的磷脂。最后,含偶氮苯的 PA 类似物代表了用于光介导控制 PA 信号的替代全化学策略。总之,这里描述的策略总结了我们迄今为止在解决为细胞中定义的磷脂池赋予精确功能的挑战方面的进展。它们还指出了未来研究的新挑战和方向,包括将成像和膜编辑工具扩展到其他类别的脂质。我们设想,生物正交化学、光遗传学和定向进化的持续应用将产生新的工具和发现,以研究磷脂组并揭示调节磷脂动态平衡和磷脂在细胞信号中的作用的新机制。

相似文献

[1]
Imaging and Editing the Phospholipidome.

Acc Chem Res. 2022-11-1

[2]
Click chemistry and optogenetic approaches to visualize and manipulate phosphatidic acid signaling.

J Biol Chem. 2022-4

[3]
IMPACT: Imaging phospholipase d activity with clickable alcohols via transphosphatidylation.

Methods Enzymol. 2020

[4]
Spatiotemporal control of phosphatidic acid signaling with optogenetic, engineered phospholipase Ds.

J Cell Biol. 2020-3-2

[5]
A real-time, click chemistry imaging approach reveals stimulus-specific subcellular locations of phospholipase D activity.

Proc Natl Acad Sci U S A. 2019-7-16

[6]
Activity-based directed evolution of a membrane editor in mammalian cells.

Nat Chem. 2023-7

[7]
Ex Uno Plura: Differential Labeling of Phospholipid Biosynthetic Pathways with a Single Bioorthogonal Alcohol.

Biochemistry. 2018-1-16

[8]
Understanding of the roles of phospholipase D and phosphatidic acid through their binding partners.

Prog Lipid Res. 2011-12-28

[9]
A Chemoenzymatic Strategy for Imaging Cellular Phosphatidic Acid Synthesis.

Angew Chem Int Ed Engl. 2016-10-10

[10]
An indirect pathway of receptor-mediated 1,2-diacylglycerol formation in mast cells. I. IgE receptor-mediated activation of phospholipase D.

J Immunol. 1990-3-15

引用本文的文献

[1]
Thin Layer Chromatography Goes Ultrasmall to Assay Sphingosine Kinase Activation in Single Primary Leukemic Cells.

Anal Chem. 2025-2-11

[2]
Exploring Lignification Complexity in Plant Cell Walls with Airyscan Super-resolution Microscopy and Bioorthogonal Chemistry.

Chem Biomed Imaging. 2023-7-6

[3]
Sulfur-tetrazine as highly efficient visible-light activatable photo-trigger for designing photoactivatable fluorescence biomolecules.

J Mater Chem B. 2024-10-30

[4]
Synthesis of Azo Analogs for Investigating Phosphatidic Acid-Mediated Signaling.

Methods Mol Biol. 2024

[5]
Imaging Phospholipase D Activity with Clickable Alcohols via Transphosphatidylation.

Methods Mol Biol. 2024

[6]
Biomimetic Vesicles with Designer Phospholipids Can Sense Environmental Redox Cues.

JACS Au. 2024-4-15

[7]
Role of Probiotics in Gut Microbiome and Metabolome in Non-Alcoholic Fatty Liver Disease Mouse Model: A Comparative Study.

Microorganisms. 2024-5-17

[8]
Super-Resolution Imaging of Clickable Lipids With Lipid Expansion Microscopy (LExM).

Curr Protoc. 2024-5

[9]
Probing Glycerolipid Metabolism using a Caged Clickable Glycerol-3-Phosphate Probe.

Chembiochem. 2024-9-16

[10]
A Bright, Photostable, and Far-Red Dye That Enables Multicolor, Time-Lapse, and Super-Resolution Imaging of Acidic Organelles.

ACS Cent Sci. 2023-12-14

本文引用的文献

[1]
Activity-based directed evolution of a membrane editor in mammalian cells.

Nat Chem. 2023-7

[2]
Organelle-selective click labeling coupled with flow cytometry allows pooled CRISPR screening of genes involved in phosphatidylcholine metabolism.

Cell Metab. 2023-6-6

[3]
Organelle-Selective Membrane Labeling through Phospholipase D-Mediated Transphosphatidylation.

JACS Au. 2022-11-28

[4]
Lipid Expansion Microscopy.

J Am Chem Soc. 2022-10-12

[5]
Photoaffinity labeling approaches to elucidate lipid-protein interactions.

Curr Opin Chem Biol. 2022-8

[6]
METALIC reveals interorganelle lipid flux in live cells by enzymatic mass tagging.

Nat Cell Biol. 2022-6

[7]
Phosphoinositides as membrane organizers.

Nat Rev Mol Cell Biol. 2022-12

[8]
Visualizing cellular and tissue ultrastructure using Ten-fold Robust Expansion Microscopy (TREx).

Elife. 2022-2-18

[9]
A Chemoproteomics Approach to Profile Phospholipase D-Derived Phosphatidyl Alcohol Interactions.

ACS Chem Biol. 2022-12-16

[10]
Click chemistry-enabled CRISPR screening reveals GSK3 as a regulator of PLD signaling.

Proc Natl Acad Sci U S A. 2021-11-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索