Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.
Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States.
Acc Chem Res. 2022 Nov 1;55(21):3088-3098. doi: 10.1021/acs.accounts.2c00510. Epub 2022 Oct 24.
Membranes are multifunctional supramolecular assemblies that encapsulate our cells and the organelles within them. Glycerophospholipids are the most abundant component of membranes. They make up the majority of the lipid bilayer and play both structural and functional roles. Each organelle has a different phospholipid composition critical for its function that results from dynamic interplay and regulation of numerous lipid-metabolizing enzymes and lipid transporters. Because lipid structures and localizations are not directly genetically encoded, chemistry has much to offer to the world of lipid biology in the form of precision tools for visualizing lipid localization and abundance, manipulating lipid composition, and in general decoding the functions of lipids in cells.In this Account, we provide an overview of our recent efforts in this space focused on two overarching and complementary goals: imaging and editing the phospholipidome. On the imaging front, we have harnessed the power of bioorthogonal chemistry to develop fluorescent reporters of specific lipid pathways. Substantial efforts have centered on phospholipase D (PLD) signaling, which generates the humble lipid phosphatidic acid (PA) that acts variably as a biosynthetic intermediate and signaling agent. Though PLD is a hydrolase that generates PA from abundant phosphatidylcholine (PC) lipids, we have exploited its transphosphatidylation activity with exogenous clickable alcohols followed by bioorthogonal tagging to generate fluorescent lipid reporters of PLD signaling in a set of methods termed IMPACT.IMPACT and its variants have facilitated many biological discoveries. Using the rapid and fluorogenic tetrazine ligation, it has revealed the spatiotemporal dynamics of disease-relevant G protein-coupled receptor signaling and interorganelle lipid transport. IMPACT using diazirine photo-cross-linkers has enabled identification of lipid-protein interactions relevant to alcohol-related diseases. Varying the alcohol reporter can allow for organelle-selective labeling, and varying the bioorthogonal detection reagent can afford super-resolution lipid imaging via expansion microscopy. Combination of IMPACT with genome-wide CRISPR screening has revealed genes that regulate physiological PLD signaling.PLD enzymes themselves can also act as tools for precision editing of the phospholipid content of membranes. An optogenetic PLD for conditional blue-light-stimulated synthesis of PA on defined organelle compartments led to the discovery of the role of organelle-specific pools of PA in regulating oncogenic Hippo signaling. Directed enzyme evolution of PLD, enabled by IMPACT, has yielded highly active superPLDs with broad substrate tolerance and an ability to edit membrane phospholipid content and synthesize designer phospholipids in vitro. Finally, azobenzene-containing PA analogues represent an alternative, all-chemical strategy for light-mediated control of PA signaling.Collectively, the strategies described here summarize our progress to date in tackling the challenge of assigning precise functions to defined pools of phospholipids in cells. They also point to new challenges and directions for future study, including extension of imaging and membrane editing tools to other classes of lipids. We envision that continued application of bioorthogonal chemistry, optogenetics, and directed evolution will yield new tools and discoveries to interrogate the phospholipidome and reveal new mechanisms regulating phospholipid homeostasis and roles for phospholipids in cell signaling.
膜是多功能的超分子组装体,它包裹着我们的细胞和细胞器。甘油磷脂是膜的最丰富成分。它们构成了大部分脂质双层,并发挥结构和功能作用。每个细胞器都有不同的磷脂组成,这对于其功能至关重要,而这些功能源于众多脂质代谢酶和脂质转运蛋白的动态相互作用和调节。由于脂质结构和定位不是直接通过遗传编码的,因此化学在脂质生物学领域提供了很多帮助,提供了用于可视化脂质定位和丰度、操纵脂质组成以及一般解码细胞中脂质功能的精确工具。在本账目中,我们提供了我们在这一领域的最新努力的概述,重点是两个总体上互补的目标:成像和编辑磷脂组。在成像方面,我们利用生物正交化学的力量开发了特定脂质途径的荧光报告物。大量的工作集中在磷脂酶 D (PLD) 信号上,该信号生成不起眼的脂质磷酸酰丝氨酸 (PA),它作为生物合成中间体和信号剂而变化。尽管 PLD 是一种从丰富的磷脂酰胆碱 (PC) 脂质中生成 PA 的水解酶,但我们利用其与外源可点击醇的转磷酸化活性,然后通过生物正交标记生成 PLD 信号的荧光脂质报告物一组称为 IMPACT 的方法。IMPACT 及其变体促成了许多生物学发现。使用快速和荧光四嗪连接,它揭示了与疾病相关的 G 蛋白偶联受体信号和细胞器间脂质转运的时空动态。使用叠氮化物光交联剂的 IMPACT 能够鉴定与酒精相关疾病相关的脂质-蛋白相互作用。改变醇报告物可以实现细胞器选择性标记,改变生物正交检测试剂可以通过扩展显微镜实现超分辨率脂质成像。IMPACT 与全基因组 CRISPR 筛选的结合揭示了调节生理 PLD 信号的基因。PLD 酶本身也可以用作膜磷脂含量的精确编辑工具。用于在定义的细胞器隔室上条件性蓝光刺激合成 PA 的光遗传学 PLD 导致发现细胞器特异性 PA 池在调节致癌 Hippo 信号中的作用。通过 IMPACT 进行的 PLD 定向酶进化产生了高度活跃的超 PLD,具有广泛的底物耐受性,并且能够在体外编辑膜磷脂含量并合成设计的磷脂。最后,含偶氮苯的 PA 类似物代表了用于光介导控制 PA 信号的替代全化学策略。总之,这里描述的策略总结了我们迄今为止在解决为细胞中定义的磷脂池赋予精确功能的挑战方面的进展。它们还指出了未来研究的新挑战和方向,包括将成像和膜编辑工具扩展到其他类别的脂质。我们设想,生物正交化学、光遗传学和定向进化的持续应用将产生新的工具和发现,以研究磷脂组并揭示调节磷脂动态平衡和磷脂在细胞信号中的作用的新机制。
Acc Chem Res. 2022-11-1
Proc Natl Acad Sci U S A. 2019-7-16
Prog Lipid Res. 2011-12-28
Angew Chem Int Ed Engl. 2016-10-10
Methods Mol Biol. 2024
Methods Mol Biol. 2024
Chembiochem. 2024-9-16
J Am Chem Soc. 2022-10-12
Curr Opin Chem Biol. 2022-8
Nat Cell Biol. 2022-6
Nat Rev Mol Cell Biol. 2022-12
ACS Chem Biol. 2022-12-16
Proc Natl Acad Sci U S A. 2021-11-30