Amini Ehsan, Ahmadi Kamran, Rashidi Alimorad, Youzbashi Amir Ali, Rezaei Mehran, Mesgar Sakineh
Research Department of Semiconductors, Material and Energy Research Center, Karaj, Iran.
Nanotechnology Research Center, Research Institute of Petroleum Industry, Tehran, Iran.
Sci Rep. 2025 Jan 13;15(1):1844. doi: 10.1038/s41598-025-85723-7.
Boehmite nanoparticles and NaY nanozeolite were synthesized by co-precipitation and hydrothermal methods, respectively, and characterized by XRD, FT-IR, TG-DTA, BET, and SEM techniques. XRD and BET analyses demonstrated the formation of boehmite nanoparticles with a surface area of 350 m/g and high crystallinity NaY nanozeolite with a surface area of 957 m/g. In order to evaluate the effect of the content of the mesoporous boehmite nanoparticles on the catalytic performance of the Residue Fluid Catalytic Cracking (RFCC) catalyst, alumina active matrix-based and silica inactive matrix-based catalysts were prepared. Results actually demonstrated that the acidity of the zeolite composition improved with the addition of boehmite nanoparticles. On the other hand, in equal zeolite content, the alumina active matrix-based catalyst possessed higher acidity (NCB, 3.44 mmol NH/g catalyst) than the silica inactive matrix-based catalyst (NCB, 2.31 mmol NH/g catalyst). Microactivity tests (MAT) demonstrated that, with equal zeolite content, active matrix-based catalysts exhibited higher catalytic performance than inactive matrix-based catalyst. Furthermore, the active matrix-based catalyst (NCB) with a surface area of 370 m/g showed the optimum catalytic performance in the RFCC process. The synthesized NCB catalyst with 20 wt% mesoporous boehmite nanoparticles as an active matrix and 30 wt% zeolite nanoparticles balanced with silica had the highest gasoline yield (42 wt%) and gasoline selectivity (65.1 wt%). The catalytic performance test results showed that in equal MAT conversion (almost 64 wt%), the synthesized NCB catalyst had higher catalytic performance than the commercial catalyst.
分别采用共沉淀法和水热法合成了勃姆石纳米颗粒和NaY纳米沸石,并用XRD、FT-IR、TG-DTA、BET和SEM技术对其进行了表征。XRD和BET分析表明,合成的勃姆石纳米颗粒的比表面积为350 m²/g,具有高结晶度,合成的NaY纳米沸石的比表面积为957 m²/g。为了评估介孔勃姆石纳米颗粒含量对渣油催化裂化(RFCC)催化剂催化性能的影响,制备了以氧化铝为活性基质和以二氧化硅为惰性基质的催化剂。结果表明,随着勃姆石纳米颗粒的加入,沸石组合物的酸度有所提高。另一方面,在沸石含量相同的情况下,以氧化铝为活性基质的催化剂(NCB,3.44 mmol NH₃/g催化剂)比以二氧化硅为惰性基质的催化剂(NCB,2.31 mmol NH₃/g催化剂)具有更高的酸度。微活性测试(MAT)表明,在沸石含量相同的情况下,以活性基质为基础的催化剂比以惰性基质为基础的催化剂表现出更高的催化性能。此外,比表面积为370 m²/g的以活性基质为基础的催化剂(NCB)在RFCC过程中表现出最佳的催化性能。合成的以20 wt%介孔勃姆石纳米颗粒为活性基质、30 wt%沸石纳米颗粒与二氧化硅平衡的NCB催化剂具有最高的汽油产率(42 wt%)和汽油选择性(65.1 wt%)。催化性能测试结果表明,在相同的MAT转化率(几乎64 wt%)下,合成的NCB催化剂比商业催化剂具有更高的催化性能。