Suppr超能文献

一种用于准确预测SNARE蛋白的深度学习和PSSM轮廓方法。

A Deep Learning and PSSM Profile Approach for Accurate SNARE Protein Prediction.

作者信息

Kha Quang Hien, Nguyen Huu Phuc Lam, Le Nguyen Quoc Khanh

机构信息

AIBioMed Research Group, Taipei Medical University, Taipei, Taiwan.

International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.

出版信息

Methods Mol Biol. 2025;2887:79-89. doi: 10.1007/978-1-0716-4314-3_5.

Abstract

SNARE proteins play a pivotal role in membrane fusion and various cellular processes. Accurate identification of SNARE proteins is crucial for elucidating their functions in both health and disease contexts. This chapter presents a novel approach employing multiscan convolutional neural networks (CNNs) combined with position-specific scoring matrix (PSSM) profiles to accurately recognize SNARE proteins. By leveraging deep learning techniques, our method significantly enhances the accuracy and efficacy of SNARE protein classification. We detail the step-by-step methodology, including dataset preparation, feature extraction using PSI-BLAST, and the design of the multiscan CNN architecture. Our results demonstrate that this approach outperforms existing methods, providing a robust and reliable tool for bioinformatics research.

摘要

SNARE蛋白在膜融合及各种细胞过程中发挥着关键作用。准确识别SNARE蛋白对于阐明其在健康和疾病背景下的功能至关重要。本章介绍了一种采用多扫描卷积神经网络(CNN)结合位置特异性评分矩阵(PSSM)谱来准确识别SNARE蛋白的新方法。通过利用深度学习技术,我们的方法显著提高了SNARE蛋白分类的准确性和效率。我们详细介绍了逐步的方法,包括数据集准备、使用PSI-BLAST进行特征提取以及多扫描CNN架构的设计。我们的结果表明,这种方法优于现有方法,为生物信息学研究提供了一个强大而可靠的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验