Suppr超能文献

一种用于准确预测SNARE蛋白的深度学习和PSSM轮廓方法。

A Deep Learning and PSSM Profile Approach for Accurate SNARE Protein Prediction.

作者信息

Kha Quang Hien, Nguyen Huu Phuc Lam, Le Nguyen Quoc Khanh

机构信息

AIBioMed Research Group, Taipei Medical University, Taipei, Taiwan.

International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.

出版信息

Methods Mol Biol. 2025;2887:79-89. doi: 10.1007/978-1-0716-4314-3_5.

Abstract

SNARE proteins play a pivotal role in membrane fusion and various cellular processes. Accurate identification of SNARE proteins is crucial for elucidating their functions in both health and disease contexts. This chapter presents a novel approach employing multiscan convolutional neural networks (CNNs) combined with position-specific scoring matrix (PSSM) profiles to accurately recognize SNARE proteins. By leveraging deep learning techniques, our method significantly enhances the accuracy and efficacy of SNARE protein classification. We detail the step-by-step methodology, including dataset preparation, feature extraction using PSI-BLAST, and the design of the multiscan CNN architecture. Our results demonstrate that this approach outperforms existing methods, providing a robust and reliable tool for bioinformatics research.

摘要

SNARE蛋白在膜融合及各种细胞过程中发挥着关键作用。准确识别SNARE蛋白对于阐明其在健康和疾病背景下的功能至关重要。本章介绍了一种采用多扫描卷积神经网络(CNN)结合位置特异性评分矩阵(PSSM)谱来准确识别SNARE蛋白的新方法。通过利用深度学习技术,我们的方法显著提高了SNARE蛋白分类的准确性和效率。我们详细介绍了逐步的方法,包括数据集准备、使用PSI-BLAST进行特征提取以及多扫描CNN架构的设计。我们的结果表明,这种方法优于现有方法,为生物信息学研究提供了一个强大而可靠的工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验