Kapucu Gözdem Karapinar, Trimbuch Thorsten, Rosenmund Christian, Weber-Boyvat Marion
Institute of Neurophysiology and NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany.
Methods Mol Biol. 2025;2887:281-294. doi: 10.1007/978-1-0716-4314-3_20.
The bimolecular fluorescence complementation (BiFC) technique is a powerful tool for visualizing protein-protein interactions in vivo. It involves genetically fused nonfluorescent fragments of green fluorescent protein (GFP) or its variants to the target proteins of interest. When these proteins interact, the GFP fragments come together, resulting in the reconstitution of a functional fluorescent protein complex that can be observed using fluorescence microscopy. In this chapter, we provide a detailed overview of the BiFC method and its application in studying protein-protein interactions in mouse hippocampal neurons. We discuss experimental procedures, including virus construct design, neuronal transduction, and imaging optimization. Additionally, we explore complementary assays for result validation and address potential challenges associated with BiFC experiments in the neuronal system. Overall, the BiFC offers researchers a valuable approach for investigating the spatial and temporal dynamics of protein interactions in living neuronal cells.
双分子荧光互补(BiFC)技术是一种在体内可视化蛋白质-蛋白质相互作用的强大工具。它涉及将绿色荧光蛋白(GFP)或其变体的非荧光片段与感兴趣的目标蛋白质进行基因融合。当这些蛋白质相互作用时,GFP片段聚集在一起,导致功能性荧光蛋白复合物的重构,可通过荧光显微镜观察到。在本章中,我们详细概述了BiFC方法及其在研究小鼠海马神经元蛋白质-蛋白质相互作用中的应用。我们讨论了实验程序,包括病毒构建体设计、神经元转导和成像优化。此外,我们探索了用于结果验证的互补测定方法,并解决了与神经元系统中BiFC实验相关的潜在挑战。总体而言,BiFC为研究活神经元细胞中蛋白质相互作用的时空动态提供了一种有价值的方法。