Suppr超能文献

基于超声图像的高风险栖息地放射组学模型用于预测分化型甲状腺癌侧颈部淋巴结转移

High-risk habitat radiomics model based on ultrasound images for predicting lateral neck lymph node metastasis in differentiated thyroid cancer.

作者信息

Liu Han, Hou Chun-Jie, Wei Min, Lu Ke-Feng, Liu Ying, Du Pei, Sun Li-Tao, Tang Jing-Lan

机构信息

Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, No. 158 Shang tang Road, Hangzhou, Zhejiang, 310011, China.

Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310014, People's Republic of China.

出版信息

BMC Med Imaging. 2025 Jan 13;25(1):16. doi: 10.1186/s12880-025-01551-1.

Abstract

BACKGROUND

This study aims to evaluate the predictive usefulness of a habitat radiomics model based on ultrasound images for anticipating lateral neck lymph node metastasis (LLNM) in differentiated thyroid cancer (DTC), and for pinpointing high-risk habitat regions and significant radiomics traits.

METHODS

A group of 214 patients diagnosed with differentiated thyroid carcinoma (DTC) between August 2021 and August 2023 were included, consisting of 107 patients with confirmed postoperative lateral lymph node metastasis (LLNM) and 107 patients without metastasis or lateral cervical lymph node involvement. An additional cohort of 43 patients was recruited to serve as an independent external testing group for this study. Patients were randomly divided into training and internal testing group at an 8:2 ratio. Region of interest (ROI) was manually outlined, and habitat analysis subregions were defined using the K-means method. The ideal number of subregions (n = 5) was determined using the Calinski-Harabasz score, leading to the creation of a habitat radiomics model with 5 subregions and the identification of the high-risk habitat model. Area under the curve (AUC) values were calculated for all models to assess their validity, and predictive model nomograms were created by integrating clinical features. The internal and external testing dataset is employed to assess the predictive performance and stability of the model.

RESULTS

In internal testing group, Habitat 3 was identified as the high-risk habitat model in the study, showing the best diagnostic efficacy among all models (AUC(CRM) vs. AUC(Habitat 3) vs. AUC(CRM + Habitat 3) = 0.84(95%CI:0.71-0.97) vs. 0.90(95%CI:0.80-1.00) vs. 0.79(95%CI:0.65-0.93)). Moreover, integrating the Habitat 3 model with clinical features and constructing nomograms enhanced the predictive capability of the combined model (AUC = 0.95(95%CI:0.88-1.00)). In this study, an independent external testing cohort was utilized to assess the model's accuracy, yielding an AUC of 0.88 (95%CI: 0.78-0.98).

CONCLUSION

The integration of the High-Risk Habitats (Habitat 3) radiomics model with clinical characteristics demonstrated a high predictive accuracy in identifying LLNM. This model has the potential to offer valuable guidance to surgeons in deciding the necessity of LLNM dissection for DTC.

CLINICAL TRIAL NUMBER

Not applicable.

摘要

背景

本研究旨在评估基于超声图像的栖息地放射组学模型对预测分化型甲状腺癌(DTC)侧颈淋巴结转移(LLNM)的有效性,以及确定高风险栖息地区域和重要的放射组学特征。

方法

纳入2021年8月至2023年8月期间诊断为分化型甲状腺癌(DTC)的214例患者,其中107例术后确诊有侧颈淋巴结转移(LLNM),107例无转移或无侧颈淋巴结受累。另外招募43例患者作为本研究的独立外部测试组。患者按8:2的比例随机分为训练组和内部测试组。手动勾勒感兴趣区域(ROI),并使用K均值方法定义栖息地分析子区域。使用Calinski-Harabasz评分确定理想的子区域数量(n = 5),从而创建一个具有5个子区域的栖息地放射组学模型并识别高风险栖息地模型。计算所有模型的曲线下面积(AUC)值以评估其有效性,并通过整合临床特征创建预测模型列线图。使用内部和外部测试数据集评估模型的预测性能和稳定性。

结果

在内部测试组中,栖息地3被确定为本研究中的高风险栖息地模型,在所有模型中显示出最佳诊断效能(AUC(CRM)与AUC(栖息地3)与AUC(CRM + 栖息地3) = 0.84(95%CI:0.71 - 0.97)与0.90(95%CI:0.80 - 1.00)与0.79(95%CI:0.65 - 0.93))。此外,将栖息地3模型与临床特征整合并构建列线图提高了联合模型的预测能力(AUC = 0.95(95%CI:0.88 - 1.00))。在本研究中,利用独立的外部测试队列评估模型的准确性,AUC为0.88(95%CI:0.78 - 0.98)。

结论

高风险栖息地(栖息地3)放射组学模型与临床特征的整合在识别LLNM方面显示出较高的预测准确性。该模型有可能为外科医生决定DTC患者进行LLNM清扫的必要性提供有价值的指导。

临床试验编号

不适用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/626b/11727229/4a5077487a5a/12880_2025_1551_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验