From the Department of Biomedical Engineering (R.V., K.B., R.C., P.L.), Case Western Reserve University, Cleveland, Ohio
Alberta Machine Intelligence Institute (R.V.), Edmonton, Alberta.
AJNR Am J Neuroradiol. 2022 Aug;43(8):1115-1123. doi: 10.3174/ajnr.A7591.
Glioblastoma is an aggressive brain tumor, with no validated prognostic biomarkers for survival before surgical resection. Although recent approaches have demonstrated the prognostic ability of tumor habitat (constituting necrotic core, enhancing lesion, T2/FLAIR hyperintensity subcompartments) derived radiomic features for glioblastoma survival on treatment-naive MR imaging scans, radiomic features are known to be sensitive to MR imaging acquisitions across sites and scanners. In this study, we sought to identify the radiomic features that are both stable across sites and discriminatory of poor and improved progression-free survival in glioblastoma tumors.
We used 150 treatment-naive glioblastoma MR imaging scans (Gadolinium-T1w, T2w, FLAIR) obtained from 5 sites. For every tumor subcompartment (enhancing tumor, peritumoral FLAIR-hyperintensities, necrosis), a total of 316 three-dimensional radiomic features were extracted. The training cohort constituted studies from 4 sites ( = 93) to select the most stable and discriminatory radiomic features for every tumor subcompartment. These features were used on a hold-out cohort ( = 57) to evaluate their ability to discriminate patients with poor survival from those with improved survival.
Incorporating the most stable and discriminatory features within a linear discriminant analysis classifier yielded areas under the curve of 0.71, 0.73, and 0.76 on the test set for distinguishing poor and improved survival compared with discriminatory features alone (areas under the curve of 0.65, 0.54, 0.62) from the necrotic core, enhancing tumor, and peritumoral T2/FLAIR hyperintensity, respectively.
Incorporating stable and discriminatory radiomic features extracted from tumors and associated habitats across multisite MR imaging sequences may yield robust prognostic classifiers of patient survival in glioblastoma tumors.
胶质母细胞瘤是一种侵袭性脑肿瘤,在手术切除前没有经过验证的生存预后生物标志物。尽管最近的方法已经证明了肿瘤栖息地(包括坏死核心、增强病变、T2/FLAIR 高信号亚区)衍生的放射组学特征在未经治疗的磁共振成像扫描中对胶质母细胞瘤生存的预后能力,但放射组学特征已知对跨站点和扫描仪的磁共振成像采集敏感。在这项研究中,我们旨在确定在肿瘤之间具有稳定性且能够区分胶质母细胞瘤肿瘤不良和改善无进展生存期的放射组学特征。
我们使用了 5 个站点获得的 150 例未经治疗的胶质母细胞瘤磁共振成像扫描(钆增强 T1w、T2w、FLAIR)。对于每个肿瘤亚区(增强肿瘤、肿瘤周围 FLAIR 高信号区、坏死),共提取了 316 个三维放射组学特征。训练队列由 4 个站点的研究组成(n=93),以选择每个肿瘤亚区最稳定和最具区分力的放射组学特征。这些特征被用于一个独立的队列(n=57),以评估它们区分预后不良和改善生存患者的能力。
在一个线性判别分析分类器中纳入最稳定和最具区分力的特征,与仅使用具有区分力的特征(坏死核心、增强肿瘤和肿瘤周围 T2/FLAIR 高信号区的曲线下面积分别为 0.65、0.54、0.62)相比,在测试集中区分预后不良和改善生存的曲线下面积分别为 0.71、0.73 和 0.76。
纳入从多站点磁共振成像序列的肿瘤及其相关栖息地提取的稳定和具有区分力的放射组学特征,可能为胶质母细胞瘤肿瘤的患者生存提供稳健的预后分类器。