Suppr超能文献

%diag_test:一个用于评估多种诊断测试诊断准确性指标的通用SAS宏。

%diag_test: a generic SAS macro for evaluating diagnostic accuracy measures for multiple diagnostic tests.

作者信息

Muthusi Jacques K, Young Peter W, Mboya Frankline O, Mwalili Samuel M

机构信息

Division of Global HIV and Tuberculosis, Global Health Centre, U.S. Centres for Disease Control and Prevention, P.O. Box 606 - 00621, Nairobi, Kenya.

Division of Global HIV and Tuberculosis, Global Health Centre, U.S. Centres for Disease Control and Prevention, Maputo, Mozambique.

出版信息

BMC Med Inform Decis Mak. 2025 Jan 13;25(1):21. doi: 10.1186/s12911-024-02808-5.

Abstract

BACKGROUND

Measures of diagnostic test accuracy provide evidence of how well a test correctly identifies or rules-out disease. Commonly used diagnostic accuracy measures (DAMs) include sensitivity and specificity, predictive values, likelihood ratios, area under the receiver operator characteristic curve (AUROC), area under precision-recall curves (AUPRC), diagnostic effectiveness (accuracy), disease prevalence, and diagnostic odds ratio (DOR) etc. Most available analysis tools perform accuracy testing for a single diagnostic test using summarized data. We developed a SAS macro for evaluating multiple diagnostic tests using individual-level data that creates a 2 × 2 summary table, AUROC and AUPRC as part of output.

METHODS

The SAS macro presented here is automated to reduce analysis time and transcription errors. It is simple to use as the user only needs to specify the input dataset, "standard" and "test" variables and threshold values. It creates a publication-quality output in Microsoft Word and Excel showing more than 15 different accuracy measures together with overlaid AUROC and AUPRC graphics to help the researcher in making decisions to adopt or reject diagnostic tests. Further, it provides for additional variance estimation methods other than the normal distribution approximation.

RESULTS

We tested the macro for quality control purposes by reproducing results from published work on evaluation of multiple types of dried blood spots (DBS) as an alternative for human immunodeficiency virus (HIV) viral load (VL) monitoring in resource-limited settings compared to plasma, the gold-standard. Plasma viral load reagents are costly, and blood must be prepared in a reference laboratory setting by a qualified technician. On the other hand, DBS are easy to prepare without these restrictions. This study evaluated the suitability of DBS from venous, microcapillary and direct spotting DBS, hence multiple diagnostic tests which were compared to plasma specimen. We also used the macro to reproduce results of published work on evaluating performance of multiple classification machine learning algorithms for predicting coronary artery disease.

CONCLUSION

The SAS macro presented here is a powerful analytic tool for analyzing data from multiple diagnostic tests. The SAS programmer can modify the source code to include other diagnostic measures and variance estimation methods. By automating analysis, the macro adds value by saving analysis time, reducing transcription errors, and producing publication-quality outputs.

摘要

背景

诊断试验准确性的衡量指标为评估一项试验正确识别或排除疾病的能力提供了依据。常用的诊断准确性指标(DAMs)包括灵敏度和特异度、预测值、似然比、受试者工作特征曲线下面积(AUROC)、精确召回率曲线下面积(AUPRC)、诊断效能(准确性)、疾病患病率以及诊断比值比(DOR)等。大多数现有的分析工具使用汇总数据对单一诊断试验进行准确性测试。我们开发了一个SAS宏,用于使用个体水平数据评估多项诊断试验,该宏会生成一个2×2汇总表、AUROC和AUPRC作为输出的一部分。

方法

本文介绍的SAS宏是自动化的,可减少分析时间和转录错误。它易于使用,因为用户只需指定输入数据集、“标准”和“试验”变量以及阈值。它会在Microsoft Word和Excel中创建一份具有发表质量的输出,展示超过15种不同的准确性指标以及叠加的AUROC和AUPRC图形,以帮助研究人员决定采用或拒绝诊断试验。此外,它还提供了除正态分布近似之外的其他方差估计方法。

结果

为了质量控制目的,我们通过重现已发表研究的结果来测试该宏。这些研究评估了多种类型的干血斑(DBS)作为资源有限环境中人类免疫缺陷病毒(HIV)病毒载量(VL)监测替代方法的情况,与作为金标准的血浆进行比较。血浆病毒载量试剂成本高昂,且血液必须在参考实验室环境中由合格技术人员制备。另一方面,DBS易于制备,不受这些限制。本研究评估了静脉血、微量毛细血管血和直接点样DBS的适用性,因此对多项诊断试验与血浆样本进行了比较。我们还使用该宏重现了已发表研究的结果,这些研究评估了多种分类机器学习算法预测冠状动脉疾病的性能。

结论

本文介绍的SAS宏是分析多项诊断试验数据的强大分析工具。SAS程序员可以修改源代码以纳入其他诊断指标和方差估计方法。通过自动化分析,该宏通过节省分析时间、减少转录错误并生成具有发表质量的输出而增加了价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/039e/11730795/a81f8d93c5a3/12911_2024_2808_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验