Mishra Shivam, Modanwal Shristi, Kumar Prabhat, Mishra Ashutosh, Mishra Nidhi
School of Life Sciences, Singhania University, Jhunjhunu, Rajasthan, 333515, India.
Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, Deoghat, Jhalwa, Prayagraj Uttar Pradesh, 211015, India.
Curr Comput Aided Drug Des. 2025 Jan 9. doi: 10.2174/0115734099343126241105102839.
Multidrug-resistant (MDR) E. coli presents a significant challenge in clinical settings, necessitating the exploration of novel therapeutic agents. Phytochemicals from Punica granatum (pomegranate) leaves have shown potential antibacterial properties. This study aims to identify and evaluate the efficacy of these phytochemicals against MDR E. coli.
This study aims to identify and evaluate the efficacy of most potential phytochemical of Punica granatum leaf against MDR E. coli. through molecular docking, adme, toxicity, molecular dynamic simulation, MMPBSA and DFT approaches.
We performed molecular docking of 11 phytochemicals from the IMPPAT database with four MDR E. coli targets: 1AJ6, 1FJ8, 4BJP, and 6BU3. Granatin B demonstrated the best binding affinity and was further analyzed. ADME (Absorption, Distribution, Metabolism, and Excretion) and toxicity analyses were conducted to assess its pharmacokinetic properties and safety profile. Molecular Dynamics (MD) simulations were performed to evaluate the stability of Granatin B with the targets. Finally, density functional theory (DFT) analysis was carried out to understand the electronic properties and reactivity of Granatin B.
Granatin B exhibited the highest binding affinity among the 11 phytochemicals, indicating strong potential as an inhibitor of MDR E. coli. ADME analysis revealed favorable pharmacokinetic properties and toxicity analysis confirmed that Granatin B is non-toxic. MD simulations showed stable interactions between Granatin B and all four targets. DFT analysis provided insights into the electronic properties and reactive sites of Granatin B, supporting its potential mechanism of action.
Granatin B from Punica granatum leaves is a promising candidate for treating MDR E. coli infections. The integration of molecular docking, ADME, toxicity, MD simulations, and DFT analysis underscores its therapeutic potential and paves the way for further experimental validation and development as a novel antibacterial agent.
耐多药大肠杆菌在临床环境中构成了重大挑战,因此需要探索新型治疗药物。石榴叶中的植物化学物质已显示出潜在的抗菌特性。本研究旨在鉴定和评估这些植物化学物质对耐多药大肠杆菌的疗效。
本研究旨在通过分子对接、药物代谢动力学(ADME)、毒性、分子动力学模拟、分子力学/泊松-玻尔兹曼表面面积(MMPBSA)和密度泛函理论(DFT)方法,鉴定和评估石榴叶中最具潜力的植物化学物质对耐多药大肠杆菌的疗效。
我们对来自IMPPAT数据库的11种植物化学物质与4个耐多药大肠杆菌靶点(1AJ6、1FJ8、4BJP和6BU3)进行了分子对接。石榴皮素B表现出最佳的结合亲和力,并对其进行了进一步分析。进行了ADME(吸收、分布、代谢和排泄)和毒性分析,以评估其药代动力学特性和安全性。进行分子动力学(MD)模拟以评估石榴皮素B与靶点的稳定性。最后,进行密度泛函理论(DFT)分析以了解石榴皮素B的电子性质和反应活性。
石榴皮素B在11种植物化学物质中表现出最高的结合亲和力,表明其作为耐多药大肠杆菌抑制剂具有很强的潜力。ADME分析显示出良好的药代动力学特性,毒性分析证实石榴皮素B无毒。MD模拟显示石榴皮素B与所有四个靶点之间存在稳定的相互作用。DFT分析提供了对石榴皮素B的电子性质和反应位点的见解,支持其潜在的作用机制。
石榴叶中的石榴皮素B是治疗耐多药大肠杆菌感染的有希望的候选药物。分子对接、ADME、毒性、MD模拟和DFT分析的结合突出了其治疗潜力,并为作为新型抗菌剂的进一步实验验证和开发铺平了道路。