Fortunatus Roman M, Balog Sandor, Sousa Flávia, Vanhecke Dimitri, Rothen-Rutishauser Barbara, Taladriz-Blanco Patricia, Petri-Fink Alke
Adolphe Merkle Institute, University of Fribourg 1700 Fribourg Switzerland
Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen 9713 AV Groningen The Netherlands.
RSC Adv. 2025 Jan 13;15(2):1095-1104. doi: 10.1039/d4ra08138b. eCollection 2025 Jan 9.
β-Carotene (βC), a natural carotenoid, is the most important and effective vitamin A precursor, known also for its antioxidant properties. However, its poor water solubility, chemical instability, and low bioavailability limit its effectiveness as an orally delivered functional nutrient. Nanoparticle encapsulation improves βC's bioaccessibility by enhancing its stability and solubility. This study compares two formulations, βC-loaded poly(lactic--glycolic acid) (PLGA) NPs and liposomes before and after exposure to simulated gastrointestinal fluids using various methods such as Taylor dispersion analysis (TDA), cryo-transmission electron microscopy, dynamic light scattering (DLS), and nanoparticle tracking analysis (NTA). TDA, a microfluidic technique, proved more effective than DLS and NTA in determining nanoparticle size in simulated gastrointestinal fluids. This highlights TDA's potential for assessing nanoparticle colloidal stability in simulated gastro-intestinal fluids, crucial for evaluating encapsulated bioactives' bioavailability. High-performance liquid chromatography (HPLC) revealed that PLGA nanoparticles incorporate and preserve βC more effectively during long-term storage compared to liposomes. Adding ascorbic acid significantly reduced degradation in simulated gastrointestinal fluids. Release studies showed that liposomes released 52% of βC after 36 hours, while PLGA nanoparticles released only 9% over 168 hours. These results provide valuable insights for selecting an appropriate βC nanocarrier for oral delivery based on desired release rates.
β-胡萝卜素(βC)是一种天然类胡萝卜素,是最重要且最有效的维生素A前体,同时也因其抗氧化特性而闻名。然而,其较差的水溶性、化学不稳定性和低生物利用度限制了它作为口服功能性营养素的有效性。纳米颗粒包封通过增强βC的稳定性和溶解性来提高其生物可及性。本研究使用泰勒分散分析(TDA)、冷冻透射电子显微镜、动态光散射(DLS)和纳米颗粒跟踪分析(NTA)等各种方法,比较了负载βC的聚乳酸-乙醇酸共聚物(PLGA)纳米颗粒和脂质体在暴露于模拟胃肠液前后的情况。TDA作为一种微流控技术,在测定模拟胃肠液中的纳米颗粒大小时,被证明比DLS和NTA更有效。这突出了TDA在评估模拟胃肠液中纳米颗粒胶体稳定性方面的潜力,这对于评估包封生物活性成分的生物利用度至关重要。高效液相色谱(HPLC)显示,与脂质体相比,PLGA纳米颗粒在长期储存期间能更有效地包载和保存βC。添加抗坏血酸可显著减少在模拟胃肠液中的降解。释放研究表明,脂质体在36小时后释放了52%的βC,而PLGA纳米颗粒在168小时内仅释放了9%。这些结果为根据所需释放速率选择合适的口服递送βC纳米载体提供了有价值的见解。