Suppr超能文献

在保护参与者隐私的同时优化数据共享:一份数据说明,描述了对医疗保健专业人员护理筛查试验结果为假阳性的女性的经历进行定性研究得出的处理后数据。

Optimising data sharing whilst protecting participant privacy: a data note describing processed data from a qualitative study of healthcare professionals' experiences of caring for women with false positive screening test results.

作者信息

Long Hannah A, Branney Peter, French David P, Brooks Joanna M

机构信息

Division of Nursing, Midwifery, and Social Work, School of Health Sciences, University of Manchester, Manchester, UK.

Department of Psychology, School of Social Sciences, University of Bradford, Bradford, UK.

出版信息

Health Psychol Behav Med. 2025 Jan 12;13(1):2449400. doi: 10.1080/21642850.2024.2449400. eCollection 2025.

Abstract

INTRODUCTION

The present article describes the processed data generated in a qualitative interview study and template analysis. Many women find the experience of being recalled and receiving a false-positive breast screening test result to be distressing. The interview study aimed to understand breast screening healthcare professionals' (HCPs) experiences of providing care during the recall process and when receiving false-positive screening test results, including their communication with women around false-positive screening test results.

METHODS

Twelve HCPs from a single screening unit in the English National Health Service Breast Screening Programme participated in semi-structured interviews in 2020. All participants were female. A range of HCPs roles were recruited, including advanced radiographer practitioners, breast radiographers, breast radiologists, clinical nurse specialists, and radiology healthcare assistants. The data were analysed thematically using template analysis from a limited realist perspective.

RESULTS

A total of 20 data files are described, reflecting the iterative nature of template analysis. The files report various versions of codes, subthemes, themes, and every template produced during analysis. The files are publicly available on the Open Science Framework and UK Data Service (ReShare).

DISCUSSION

This data note outlines our approach to conducting a template analysis of qualitative data while protecting highly identifiable data, which is stored in a non-public archive and only available to the study team. It offers a practical, worked example of the template analysis process, thereby providing a detailed illustration beyond the concise summaries typically found in published reports, and complementing methodological papers of template analysis.

摘要

引言

本文描述了在一项定性访谈研究和模板分析中生成的处理后数据。许多女性发现被召回并收到假阳性乳房筛查检测结果的经历令人痛苦。该访谈研究旨在了解乳房筛查医疗保健专业人员(HCPs)在召回过程中以及收到假阳性筛查检测结果时提供护理的经历,包括他们围绕假阳性筛查检测结果与女性的沟通情况。

方法

2020年,来自英国国家医疗服务体系乳房筛查项目中一个筛查单位的12名HCPs参与了半结构化访谈。所有参与者均为女性。招募了一系列HCPs角色,包括高级放射技师从业者、乳房放射技师、乳房放射科医生、临床护士专家和放射科医疗助理。使用有限现实主义视角的模板分析对数据进行了主题分析。

结果

共描述了20个数据文件,反映了模板分析的迭代性质。这些文件报告了分析过程中产生的各种版本的代码、子主题、主题和每个模板。这些文件可在开放科学框架和英国数据服务(ReShare)上公开获取。

讨论

本数据说明概述了我们在保护高度可识别数据的同时对定性数据进行模板分析的方法,这些数据存储在非公开档案中,仅研究团队可获取。它提供了模板分析过程的一个实际的、可操作的示例,从而提供了一个超出已发表报告中通常简洁总结的详细说明,并补充了模板分析的方法学论文。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de0b/11727048/5e6dfc891cbf/RHPB_A_2449400_F0001_OB.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验