Jiang Xueqian, Zeng Xiangcui, Xu Ming, Li Mingna, Zhang Fan, He Fei, Yang Tianhui, Wang Chuan, Gao Ting, Long Ruicai, Yang Qingchuan, Kang Junmei
Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 100193.
College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China, 266109.
Hortic Res. 2025 Jan 11;12(1):uhae271. doi: 10.1093/hr/uhae271. eCollection 2025 Jan.
Appropriate root system architecture (RSA) can improve alfalfa yield, yet its genetic basis remains largely unexplored. This study evaluated six RSA traits in 171 alfalfa genotypes grown under controlled greenhouse conditions. We also analyzed five yield-related traits in normal and drought stress environments and found a significant correlation (0.50) between root dry weight (RDW) and alfalfa dry weight under normal conditions (N_DW). A genome-wide association study (GWAS) was performed using 1 303 374 single-nucleotide polymorphisms (SNPs) to explore the relationships between RSA traits. Sixty significant SNPs (-log () ≥ 5) were identified, with genes within the 50 kb upstream and downstream ranges primarily enriched in GO terms related to root development, hormone synthesis, and signaling, as well as morphological development. Further analysis identified 19 high-confidence candidate genes, including AUXIN RESPONSE FACTORs (ARFs), LATERAL ORGAN BOUNDARIES-DOMAIN (LBD), and WUSCHEL-RELATED HOMEOBOX (WOX). We verified that the forage dry weight under both normal and drought conditions exhibited significant differences among materials with different numbers of favorable haplotypes. Alfalfa containing more favorable haplotypes exhibited higher forage yields, whereas favorable haplotypes were not subjected to human selection during alfalfa breeding. Genomic prediction (GP) utilized SNPs from GWAS and machine learning for each RSA trait, achieving prediction accuracies ranging from 0.70 for secondary root position (SRP) to 0.80 for root length (RL), indicating robust predictive capability across the assessed traits. These findings provide new insights into the genetic underpinnings of root development in alfalfa, potentially informing future breeding strategies aimed at improving yield.
合适的根系结构(RSA)能够提高苜蓿产量,但其遗传基础在很大程度上仍未得到探索。本研究评估了在可控温室条件下生长的171个苜蓿基因型的六个RSA性状。我们还分析了正常和干旱胁迫环境下的五个产量相关性状,发现根干重(RDW)与正常条件下苜蓿干重(N_DW)之间存在显著相关性(0.50)。利用1303374个单核苷酸多态性(SNP)进行全基因组关联研究(GWAS),以探索RSA性状之间的关系。共鉴定出60个显著的SNP(-log()≥5),50 kb上下游范围内的基因主要富集在与根系发育、激素合成和信号传导以及形态发育相关的基因本体(GO)术语中。进一步分析确定了19个高可信度候选基因,包括生长素响应因子(ARF)、侧生器官边界域(LBD)和与WUSCHEL相关的同源盒(WOX)。我们验证了正常和干旱条件下的牧草干重在具有不同有利单倍型数量的材料之间存在显著差异。含有更多有利单倍型的苜蓿表现出更高的牧草产量,而有利单倍型在苜蓿育种过程中未受到人工选择。基因组预测(GP)利用来自GWAS的SNP和机器学习对每个RSA性状进行分析,预测准确率从侧根位置(SRP)的0.70到根长(RL)的0.80不等,表明在所评估的性状上具有强大的预测能力。这些发现为苜蓿根系发育的遗传基础提供了新的见解,可能为未来旨在提高产量的育种策略提供参考。