Suppr超能文献

细胞状态动力学建模的进展:整合组学数据与预测技术。

Advances in modeling cellular state dynamics: integrating omics data and predictive techniques.

作者信息

Jung Sungwon

机构信息

Department of Genome Medicine and Science, Gachon University College of Medicine, Incheon, Republic of Korea.

Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Incheon, Republic of Korea.

出版信息

Anim Cells Syst (Seoul). 2025 Jan 10;29(1):72-83. doi: 10.1080/19768354.2024.2449518. eCollection 2025.

Abstract

Dynamic modeling of cellular states has emerged as a pivotal approach for understanding complex biological processes such as cell differentiation, disease progression, and tissue development. This review provides a comprehensive overview of current approaches for modeling cellular state dynamics, focusing on techniques ranging from dynamic or static biomolecular network models to deep learning models. We highlight how these approaches integrated with various omics data such as transcriptomics, and single-cell RNA sequencing could be used to capture and predict cellular behavior and transitions. We also discuss applications of these modeling approaches in predicting gene knockout effects, designing targeted interventions, and simulating organ development. This review emphasizes the importance of selecting appropriate modeling strategies based on scalability and resolution requirements, which vary according to the complexity and size of biological systems under study. By evaluating strengths, limitations, and recent advancements of these methodologies, we aim to guide future research in developing more robust and interpretable models for understanding and manipulating cellular state dynamics in various biological contexts, ultimately advancing therapeutic strategies and precision medicine.

摘要

细胞状态的动态建模已成为理解细胞分化、疾病进展和组织发育等复杂生物过程的关键方法。本综述全面概述了当前用于建模细胞状态动态的方法,重点介绍了从动态或静态生物分子网络模型到深度学习模型等技术。我们强调了这些方法如何与转录组学和单细胞RNA测序等各种组学数据相结合,用于捕捉和预测细胞行为及转变。我们还讨论了这些建模方法在预测基因敲除效应、设计靶向干预措施和模拟器官发育方面的应用。本综述强调了根据可扩展性和分辨率要求选择合适建模策略的重要性,这些要求会因所研究生物系统的复杂性和规模而异。通过评估这些方法的优势、局限性和最新进展,我们旨在指导未来的研究,以开发更强大且可解释的模型,用于理解和操纵各种生物背景下的细胞状态动态,最终推动治疗策略和精准医学的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c133/11727055/461ccd4991d0/TACS_A_2449518_F0001_OC.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验