Suppr超能文献

探索患有多种疾病的患者的自我管理行为概况:一项序列式、解释性混合方法研究。

Exploring Self-Management Behavior Profiles in Patients with Multimorbidity: A Sequential, Explanatory Mixed-Methods Study.

作者信息

Fu Yujia, Wu Jingjie, Guo Zhiting, Shi Yajun, Zhao Binyu, Yu Jianing, Chen Dandan, Wu Qiwei, Xue Erxu, Du Haoyang, Zhang Huafang, Shao Jing

机构信息

Department of Nursing, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, People's Republic of China.

School of Nursing and Institute of Nursing Research, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.

出版信息

Clin Interv Aging. 2025 Jan 8;20:1-17. doi: 10.2147/CIA.S488890. eCollection 2025.

Abstract

PURPOSE

This study aims to identify self-management behavior profiles in multimorbid patients, and explore how workload, capacity, and their interactions influence these profiles.

PATIENTS AND METHODS

A sequential explanatory mixed-methods design was employed. In the quantitative phase (August 2022 to May 2023), data were collected from 1,920 multimorbid patients across nine healthcare facilities in Zhejiang Province. Latent Profile Analysis (LPA) was used to identify distinct self-management behavior profiles. Multinomial logistic regression was then used to assess the influence of workload and capacity dimensions (independent variables in Model 1), as well as their interaction (independent variables in Model 2), on these profiles (dependent variables in two models). The qualitative phase (May to August 2023) included semi-structured interviews with 16 participants, and the Giorgi analysis method was used for data categorization and coding.

RESULTS

Quantitative analysis revealed three self-management behavior profiles: Symptom-driven Profile (8.0%), Passive-engagement Profile (29.5%), and Active-cooperation Profile (62.5%). Compared to the Active-cooperation Profile, both the Symptom-driven and Passive-engagement Profiles were associated with a higher workload ( > 1, < 0.05) and lower capacity ( < 1, < 0.05). An interaction of the overall workload and capacity showed a synergistic effect in the Passive-engagement Profile ( = 1.08, 95% = 1.03-1.13, < 0.05). Qualitative analysis identified six workload themes, and related coping strategies of three self-management behavior profiles. The integrated results highlighted distinct characteristics: Symptom-driven Profile patients exhibited reactive behaviors with limited health awareness, Passive-engagement Profile patients reduced engagement once symptoms stabilized, while Active-cooperation Profile patients proactively managed their conditions.

CONCLUSION

Identifying three distinct self-management behavior profiles and their relationship with workload and capacity provides valuable insights into multimorbid patients' experiences, emphasizing the need for tailored interventions targeting workload and capacity to improve health outcomes.

摘要

目的

本研究旨在识别多病共存患者的自我管理行为模式,并探讨工作量、能力及其相互作用如何影响这些模式。

患者与方法

采用序列解释性混合方法设计。在定量阶段(2022年8月至2023年5月),从浙江省9家医疗机构的1920名多病共存患者中收集数据。使用潜在类别分析(LPA)来识别不同的自我管理行为模式。然后使用多项逻辑回归来评估工作量和能力维度(模型1中的自变量)及其相互作用(模型2中的自变量)对这些模式(两个模型中的因变量)的影响。定性阶段(2023年5月至8月)包括对16名参与者进行半结构化访谈,并使用 Giorgi 分析方法进行数据分类和编码。

结果

定量分析揭示了三种自我管理行为模式:症状驱动型模式(8.0%)、被动参与型模式(29.5%)和积极合作型模式(62.5%)。与积极合作型模式相比,症状驱动型和被动参与型模式均与更高的工作量(>1,P<0.05)和更低的能力(<1,P<0.05)相关。总体工作量和能力的相互作用在被动参与型模式中显示出协同效应(β = 1.08,95%CI = 1.03 - 1.13,P<0.05)。定性分析确定了六个工作量主题以及三种自我管理行为模式的相关应对策略。综合结果突出了不同的特征:症状驱动型模式的患者表现出反应性的行为,健康意识有限;被动参与型模式的患者在症状稳定后减少参与;而积极合作型模式的患者则积极管理自己的病情。

结论

识别出三种不同的自我管理行为模式及其与工作量和能力的关系,为多病共存患者的经历提供了有价值的见解,强调了针对工作量和能力进行量身定制干预以改善健康结果的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24ba/11725232/1e6c1c334f3b/CIA-20-1-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验