Czap Gregory, Noh Kyungju, Velasco Jairo, Macfarlane Roger M, Brune Harald, Lutz Christopher P
IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, United States.
Center for Quantum Nanoscience (QNS), Institute of Basic Science (IBS), Seoul 03760, Republic of Korea.
ACS Nano. 2025 Jan 28;19(3):3705-3713. doi: 10.1021/acsnano.4c14327. Epub 2025 Jan 14.
Lanthanide atoms show long magnetic lifetimes because of their strongly localized 4 electrons, but electrical control of their spins has been difficult because of their closed valence shell configurations. We achieved electron spin resonance of individual lanthanide atoms using a scanning tunneling microscope to probe the atoms bound to a protective insulating film. The atoms on this surface formed a singly charged cation state having an unpaired 6 electron, enabling tunnel current to access their 4 electrons. Europium spectra display a rich array of transitions among the 54 combined electron and nuclear spin states. In contrast, samarium's ground state is a Kramers doublet with a very large -factor of 5. These results demonstrate that all-electronic sensing and control of individual lanthanide spins is possible for quantum devices and spin-based electronics by using their rarely observed monovalent cation state.
镧系原子由于其4电子的强局域性而具有较长的磁寿命,但由于其封闭的价壳层构型,对其自旋进行电控制一直很困难。我们使用扫描隧道显微镜实现了单个镧系原子的电子自旋共振,以探测与保护性绝缘膜结合的原子。该表面上的原子形成了具有未配对6电子的单电荷阳离子态,使隧道电流能够接触到它们的4电子。铕光谱显示了54种组合的电子和核自旋态之间丰富的跃迁阵列。相比之下,钐的基态是一个克莱默斯二重态,其因子非常大,为5。这些结果表明,通过利用其罕见的单价阳离子态,对单个镧系自旋进行全电子传感和控制对于量子器件和自旋电子学是可行的。