Center for Quantum Nanoscience (QNS), Institute for Basic Science (IBS), Seoul 03760, South Korea.
Department of Physics, Ewha Womans University, Seoul 03760, South Korea.
Nano Lett. 2022 Dec 14;22(23):9766-9772. doi: 10.1021/acs.nanolett.2c02782. Epub 2022 Nov 1.
Hyperfine interactions have been widely used in material science, organic chemistry, and structural biology as a sensitive probe to local chemical environments. However, traditional ensemble measurements of hyperfine interactions average over a macroscopic number of spins with different geometrical locations and nuclear isotopes. Here, we use a scanning tunneling microscope (STM) combined with electron spin resonance (ESR) to measure hyperfine spectra of hydrogenated-Ti on MgO/Ag(100) at low-symmetry binding sites and thereby determine the isotropic and anisotropic hyperfine interactions at the single-atom level. Combining vector-field ESR spectroscopy with STM-based atom manipulation, we characterize the full hyperfine tensors of Ti and Ti and identify significant spatial anisotropy of the hyperfine interactions for both isotopes. Density functional theory calculations reveal that the large hyperfine anisotropy arises from highly anisotropic distributions of the ground-state electron spin density. Our work highlights the power of ESR-STM-enabled single-atom hyperfine spectroscopy in revealing electronic ground states and atomic-scale chemical environments.
超精细相互作用在材料科学、有机化学和结构生物学中被广泛用作探测局部化学环境的灵敏探针。然而,传统的超精细相互作用的整体测量方法对具有不同几何位置和核同位素的大量自旋进行平均处理。在这里,我们使用扫描隧道显微镜(STM)结合电子自旋共振(ESR),在低对称结合位点测量氢化钛在 MgO/Ag(100)上的超精细光谱,从而在单原子水平上确定各向同性和各向异性的超精细相互作用。通过与基于 STM 的原子操纵相结合的向量场 ESR 光谱学,我们对 Ti 和 Ti 的完整超精细张量进行了表征,并确定了两种同位素的超精细相互作用具有显著的空间各向异性。密度泛函理论计算表明,超精细各向异性大是由于基态电子自旋密度的高度各向异性分布引起的。我们的工作强调了 ESR-STM 实现的单原子超精细光谱学在揭示电子基态和原子尺度化学环境方面的强大功能。