Suppr超能文献

细胞色素P450的自然变异独立于β-微管蛋白修饰噻苯达唑反应。

Naturally occurring variation in a cytochrome P450 modifies thiabendazole responses independently of beta-tubulin.

作者信息

Collins J B, Dilks Clayton M, Hahnel Steffen R, Rodriguez Briana, Fox Bennett W, Redman Elizabeth, Yu Jingfang, Cooke Brittany, Sihuta Kateryna, Zamanian Mostafa, Roy Peter J, Schroeder Frank C, Gilleard John S, Andersen Erik C

机构信息

Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America.

Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America.

出版信息

PLoS Pathog. 2025 Jan 14;21(1):e1012602. doi: 10.1371/journal.ppat.1012602. eCollection 2025 Jan.

Abstract

Widespread anthelmintic resistance has complicated the management of parasitic nematodes. Resistance to the benzimidazole (BZ) drug class is nearly ubiquitous in many species and is associated with mutations in beta-tubulin genes. However, mutations in beta-tubulin alone do not fully explain all BZ resistance. We performed a genome-wide association study using a genetically diverse panel of Caenorhabditis elegans strains to identify loci that contribute to resistance to the BZ drug thiabendazole (TBZ). We identified a quantitative trait locus (QTL) on chromosome V independent of all beta-tubulin genes and overlapping with two promising candidate genes, the cytochrome P450 gene cyp-35D1 and the nuclear hormone receptor nhr-176. Both genes were previously demonstrated to play a role in TBZ metabolism. NHR-176 binds TBZ and induces the expression of CYP-35D1, which metabolizes TBZ. We generated single gene deletions of cyp-35D1 and nhr-176 and found that both genes play a role in TBZ response. A predicted high-impact lysine-to-glutamate substitution at position 267 (K267E) in CYP-35D1 was identified in a sensitive strain, and reciprocal allele replacement strains in different genetic backgrounds were used to show that the lysine allele conferred increased TBZ resistance. Using competitive fitness assays, we found that neither allele was deleterious, but the lysine allele was selected in the presence of TBZ. Additionally, we found that the lysine allele significantly increased the rate of TBZ metabolism compared to the glutamate allele. Moreover, yeast expression assays showed that the lysine version of CYP-35D1 had twice the enzymatic activity of the glutamate allele. To connect our results to parasitic nematodes, we analyzed four Haemonchus contortus cytochrome P450 orthologs but did not find variation at the 267 position in fenbendazole-resistant populations. Overall, we confirmed that variation in this cytochrome P450 gene is the first locus independent of beta-tubulin to play a role in BZ resistance.

摘要

广泛的抗驱虫药耐药性使寄生线虫的管理变得复杂。对苯并咪唑(BZ)类药物的耐药性在许多物种中几乎普遍存在,并且与β-微管蛋白基因突变有关。然而,仅β-微管蛋白的突变并不能完全解释所有的BZ耐药性。我们使用一组基因多样的秀丽隐杆线虫品系进行了全基因组关联研究,以确定有助于抵抗BZ药物噻苯达唑(TBZ)的基因座。我们在第五条染色体上鉴定出一个数量性状基因座(QTL),它独立于所有β-微管蛋白基因,并与两个有前景的候选基因重叠,即细胞色素P450基因cyp-35D1和核激素受体nhr-176。先前已证明这两个基因在TBZ代谢中起作用。NHR-176与TBZ结合并诱导CYP-35D1的表达,后者可代谢TBZ。我们构建了cyp-35D1和nhr-176的单基因缺失体,发现这两个基因在TBZ反应中均起作用。在一个敏感品系中鉴定出CYP-35D1第267位(K267E)有一个预测的高影响赖氨酸到谷氨酸的替换,并在不同遗传背景下使用反向等位基因替换品系表明赖氨酸等位基因赋予了更高的TBZ耐药性。通过竞争性适应性测定,我们发现两个等位基因均无害,但在有TBZ存在的情况下赖氨酸等位基因被选择。此外,我们发现与谷氨酸等位基因相比,赖氨酸等位基因显著提高了TBZ的代谢速率。而且,酵母表达试验表明CYP-35D1的赖氨酸版本的酶活性是谷氨酸等位基因的两倍。为了将我们的结果与寄生线虫联系起来,我们分析了四种捻转血矛线虫细胞色素P450直系同源物,但在对芬苯达唑耐药的群体中未发现第267位的变异。总体而言,我们证实了该细胞色素P450基因的变异是第一个独立于β-微管蛋白在BZ耐药性中起作用的基因座。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e6e/11771912/667933abd0ce/ppat.1012602.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验