Suppr超能文献

双路径神经网络从全切片图像中提取肿瘤微环境信息,以预测胶质瘤的分子分型和预后。

Dual-path neural network extracts tumor microenvironment information from whole slide images to predict molecular typing and prognosis of Glioma.

作者信息

Ning Zehang, Yang Bojie, Wang Yuanyuan, Shi Zhifeng, Yu Jinhua, Wu Guoqing

机构信息

School of Information Science and Technology, Fudan University, Shanghai, 200433, China; Key Laboratory of Medical Imaging, Computing and Computer Assisted Intervention, Shanghai, 200433, China.

Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200433, China; AI Lab of Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200433, China.

出版信息

Comput Methods Programs Biomed. 2025 Apr;261:108580. doi: 10.1016/j.cmpb.2024.108580. Epub 2025 Jan 4.

Abstract

BACKGROUND AND OBJECTIVE

Utilizing AI to mine tumor microenvironment information in whole slide images (WSIs) for glioma molecular subtype and prognosis prediction is significant for treatment. Existing weakly-supervised learning frameworks based on multi-instance learning have potential in WSIs analysis, but the large number of patches from WSIs challenges the effective extraction of key local patch and neighboring patch microenvironment info. Therefore, this paper aims to develop an automatic neural network that effectively extracts tumor microenvironment information from WSIs to predict molecular typing and prognosis of glioma.

METHODS

In this paper, we proposed a dual-path pathology analysis (DPPA) framework to enhance the analysis ability of WSIs for glioma diagnosis. Firstly, to mitigate the impact of redundant patches and enhance the integration of salient patch information within a multi-instance learning context, we propose a two-stage attention-based dynamic multi-instance learning network. In the network, two-stage attention and dynamic random sampling are designed to integrate diverse image patch information in pivotal regions adaptively. Secondly, to unearth the wealth of spatial context inherent in WSIs, we build a spatial relationship information quantification module. This module captures the spatial distribution of patches that encompass a variety of tissue structures, shedding light on the tumor microenvironment.

RESULTS

A large number of experiments on three datasets, two in-house and one public, totaling 1,795 WSIs demonstrate the encouraging performance of the DPPA, with mean area under curves of 0.94, 0.85, and 0.88 in predicting Isocitrate Dehydrogenase 1, Telomerase Reverse Tranase, and 1p/19q respectively, and a mean C-index of 0.82 in prognosis prediction. The proposed model can also group tumors in existing tumor subgroups into good and bad prognoses, with P < 0.05 on the Log-rank test.

CONCLUSIONS

The results of multi-center experiments demonstrate that the proposed DPPA surpasses the state-of-the-art models across multiple metrics. Through ablation experiments and survival analysis, the outstanding analytical ability of this model is further validated. Meanwhile, based on the work related to the interpretability of the model, the reliability and validity of the model have also been strongly confirmed. All source codes are released at: https://github.com/nzehang97/DPPA.

摘要

背景与目的

利用人工智能挖掘全切片图像(WSIs)中的肿瘤微环境信息以进行胶质瘤分子亚型和预后预测对治疗具有重要意义。现有的基于多实例学习的弱监督学习框架在WSIs分析中具有潜力,但来自WSIs的大量切片对关键局部切片和相邻切片微环境信息的有效提取提出了挑战。因此,本文旨在开发一种能从WSIs中有效提取肿瘤微环境信息以预测胶质瘤分子分型和预后的自动神经网络。

方法

在本文中,我们提出了一种双路径病理分析(DPPA)框架来增强WSIs对胶质瘤诊断的分析能力。首先,为减轻冗余切片的影响并在多实例学习背景下增强显著切片信息的整合,我们提出了一种基于两阶段注意力的动态多实例学习网络。在该网络中,设计了两阶段注意力和动态随机采样以自适应地整合关键区域的多样图像切片信息。其次,为挖掘WSIs中固有的丰富空间上下文信息,我们构建了一个空间关系信息量化模块。该模块捕捉包含多种组织结构的切片的空间分布,从而揭示肿瘤微环境。

结果

在三个数据集(两个内部数据集和一个公共数据集,共1795张WSIs)上进行的大量实验表明DPPA具有令人鼓舞的性能,在预测异柠檬酸脱氢酶1、端粒酶逆转录酶和1p/19q时的曲线下面积均值分别为0.94、0.85和0.88,在预后预测中的C指数均值为0.82。所提出的模型还能将现有肿瘤亚组中的肿瘤分为预后良好和不良两组,对数秩检验的P<0.05。

结论

多中心实验结果表明,所提出的DPPA在多个指标上超越了现有最先进的模型。通过消融实验和生存分析,进一步验证了该模型出色的分析能力。同时,基于与模型可解释性相关的工作,也有力地证实了模型的可靠性和有效性。所有源代码发布于:https://github.com/nzehang97/DPPA。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验