College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.
Shenzhen College of Advanced Technology, University of the Chinese Academy of Sciences, Beijing, China.
Comput Med Imaging Graph. 2023 Sep;108:102275. doi: 10.1016/j.compmedimag.2023.102275. Epub 2023 Jul 29.
Cutaneous melanoma represents one of the most life-threatening malignancies. Histopathological image analysis serves as a vital tool for early melanoma detection. Deep neural network (DNN) models are frequently employed to aid pathologists in enhancing the efficiency and accuracy of diagnoses. However, due to the paucity of well-annotated, high-resolution, whole-slide histopathology image (WSI) datasets, WSIs are typically fragmented into numerous patches during the model training and testing stages. This process disregards the inherent interconnectedness among patches, potentially impeding the models' performance. Additionally, the presence of excess, non-contributing patches extends processing times and introduces substantial computational burdens. To mitigate these issues, we draw inspiration from the clinical decision-making processes of dermatopathologists to propose an innovative, weakly supervised deep reinforcement learning framework, titled Fast medical decision-making in melanoma histopathology images (FastMDP-RL). This framework expedites model inference by reducing the number of irrelevant patches identified within WSIs. FastMDP-RL integrates two DNN-based agents: the search agent (SeAgent) and the decision agent (DeAgent). The SeAgent initiates actions, steered by the image features observed in the current viewing field at various magnifications. Simultaneously, the DeAgent provides labeling probabilities for each patch. We utilize multi-instance learning (MIL) to construct a teacher-guided model (MILTG), serving a dual purpose: rewarding the SeAgent and guiding the DeAgent. Our evaluations were conducted using two melanoma datasets: the publicly accessible TCIA-CM dataset and the proprietary MELSC dataset. Our experimental findings affirm FastMDP-RL's ability to expedite inference and accurately predict WSIs, even in the absence of pixel-level annotations. Moreover, our research investigates the WSI-based interactive environment, encompassing the design of agents, state and reward functions, and feature extractors suitable for melanoma tissue images. This investigation offers valuable insights and references for researchers engaged in related studies. The code is available at: https://github.com/titizheng/FastMDP-RL.
皮肤黑色素瘤是最具威胁生命的恶性肿瘤之一。组织病理学图像分析是早期黑色素瘤检测的重要工具。深度神经网络 (DNN) 模型常用于帮助病理学家提高诊断的效率和准确性。然而,由于缺乏标注良好、高分辨率、全切片组织病理学图像 (WSI) 数据集,在模型训练和测试阶段,WSI 通常会被分割成许多小块。这个过程忽略了小块之间的内在关联性,可能会影响模型的性能。此外,过多的非贡献性小块会延长处理时间并引入大量的计算负担。为了解决这些问题,我们从皮肤科病理学家的临床决策过程中汲取灵感,提出了一种创新的、弱监督的深度强化学习框架,名为 Fast medical decision-making in melanoma histopathology images (FastMDP-RL)。这个框架通过减少 WSI 中识别的不相关小块的数量来加快模型推断。FastMDP-RL 集成了两个基于 DNN 的代理:搜索代理 (SeAgent) 和决策代理 (DeAgent)。SeAgent 基于当前视野中观察到的图像特征在不同的放大倍数下发起操作。同时,DeAgent 为每个小块提供标签概率。我们使用多实例学习 (MIL) 来构建一个教师指导模型 (MILTG),它有两个目的:奖励 SeAgent 和指导 DeAgent。我们的评估使用了两个黑色素瘤数据集:可公开访问的 TCIA-CM 数据集和专有的 MELSC 数据集。我们的实验结果证实了 FastMDP-RL 能够加快推断速度并准确预测 WSI,即使没有像素级注释。此外,我们的研究还调查了基于 WSI 的交互环境,包括代理、状态和奖励函数的设计,以及适合黑色素瘤组织图像的特征提取器。这为从事相关研究的研究人员提供了有价值的见解和参考。代码可在:https://github.com/titizheng/FastMDP-RL 获得。