Suppr超能文献

一种用于急诊科上消化道出血患者重症监护病房收治的新型预测模型。

A novel predictive model for Intensive Care Unit admission in Emergency Department patients with upper gastrointestinal bleeding.

作者信息

Yang Jinmo, Han Sangsoo, Nah Sangun, Chung Sung Phil

机构信息

Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.

Department of Emergency Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea.

出版信息

Medicine (Baltimore). 2024 Nov 22;103(47):e40440. doi: 10.1097/MD.0000000000040440.

Abstract

Acute upper gastrointestinal bleeding (UGIB) is a critical emergency. Conventional scoring models for patients with UGIB have limitations; thus, more suitable tools for the Emergency Department are necessary. We aimed to develop a new model that can identify significant predictors of Intensive Care Unit (ICU) admission in Emergency Department patients with UGIB and to compare its predictive accuracy with that of existing models. We retrospectively analyzed data from patients with UGIB treated between January 2020 and July 2022 at the Emergency Department of a single tertiary medical center. Using multivariable logistic regression and the area under the receiver operating characteristic curve (AUROC), we developed a new model to predict the probability of ICU admission. Among 433 patients, multiple logistic regression analysis identified sex, systolic blood pressure, diastolic blood pressure, hemoglobin level, platelet count, alanine transaminase level, and prothrombin time as significant predictors of ICU admission. Our model demonstrated superior predictive accuracy with an AUROC of 0.8539 (95% confidence interval [CI]: 0.8078-0.8999), outperforming the Glasgow-Blatchford score and AIMS65 score, which had AUROCs of 0.7598 (95% CI: 0.7067-0.8130) and 0.6930 (95% CI: 0.6324-0.7537), respectively. We implemented this model in a user-friendly calculator for clinical use. We identified key predictors of ICU admission that are crucial for hemodynamic stabilization in patients with UGIB. Our model, combined with this probability calculator, will enhance clinical decision-making and patient care for UGIB in emergency settings.

摘要

急性上消化道出血(UGIB)是一种危急重症。传统的UGIB患者评分模型存在局限性;因此,急诊科需要更合适的工具。我们旨在开发一种新模型,以识别急诊科UGIB患者入住重症监护病房(ICU)的重要预测因素,并将其预测准确性与现有模型进行比较。我们回顾性分析了2020年1月至2022年7月在一家单一的三级医疗中心急诊科接受治疗的UGIB患者的数据。使用多变量逻辑回归和受试者操作特征曲线下面积(AUROC),我们开发了一种新模型来预测ICU入住概率。在433例患者中,多因素逻辑回归分析确定性别、收缩压、舒张压、血红蛋白水平、血小板计数、丙氨酸转氨酶水平和凝血酶原时间为ICU入住的重要预测因素。我们的模型显示出卓越的预测准确性,AUROC为0.8539(95%置信区间[CI]:0.8078 - 0.8999),优于格拉斯哥 - 布拉奇福德评分和AIMS65评分,它们的AUROC分别为0.7598(95% CI:0.7067 - 0.8130)和0.6930(95% CI:0.6324 - 0.7537)。我们将此模型应用于一个便于临床使用的计算器中。我们确定了ICU入住的关键预测因素,这些因素对于UGIB患者的血流动力学稳定至关重要。我们的模型与这个概率计算器相结合,将加强急诊环境中UGIB的临床决策和患者护理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验