Suppr超能文献

用于单分子荧光共振能量转移(FRET)轨迹理想化的预训练深度神经网络Kin-SiM

Pretrained Deep Neural Network Kin-SiM for Single-Molecule FRET Trace Idealization.

作者信息

Zhang Leyou, Li Jieming, Walter Nils G

机构信息

Google, New York City, New York 10011, United States.

Bristol Myers Squibb, New Brunswick, New Jersey 08901, United States.

出版信息

J Phys Chem B. 2025 Jan 30;129(4):1167-1175. doi: 10.1021/acs.jpcb.4c05276. Epub 2025 Jan 14.

Abstract

Single-molecule fluorescence resonance energy transfer (smFRET) has emerged as a pivotal technique for probing biomolecular dynamics over time at nanometer scales. Quantitative analyses of smFRET time traces remain challenging due to confounding factors such as low signal-to-noise ratios, photophysical effects such as bleaching and blinking, and the complexity of modeling the underlying biomolecular states and kinetics. The dynamic distance information shaping the smFRET trace powerfully uncovers even transient conformational changes in single biomolecules both at or far from equilibrium, relying on trace idealization to identify specific interconverting states. Conventional trace idealization methods based on hidden Markov models (HMMs) require substantial a priori knowledge of the system under study, manual intervention, and assumptions about the number of states and transition probabilities. Here, we present a deep learning framework using long short-term memory (LSTM) to automate the trace idealization, termed Kin-SiM. Our approach employs neural networks pretrained on simulated data to learn high-order correlations in the multidimensional FRET trajectories. Without user input of Markovian assumptions, the trained LSTM networks directly idealize the FRET traces to extract the number of underlying biomolecular states, their interstate dynamics, and associated kinetic parameters. On benchmark smFRET data sets, Kin-SiM achieves a performance similar to conventional HMM-based methods but with less hands-on time and lower risk of bias. We further systematically evaluate the key training factors that affect network performance to define the correct hyperparameter tuning for applying deep neural networks to smFRET data analyses.

摘要

单分子荧光共振能量转移(smFRET)已成为一种关键技术,用于在纳米尺度上探测生物分子随时间的动力学。由于存在诸如低信噪比、光漂白和闪烁等光物理效应以及对潜在生物分子状态和动力学进行建模的复杂性等混杂因素,对smFRET时间轨迹进行定量分析仍然具有挑战性。塑造smFRET轨迹的动态距离信息能够有力地揭示单个生物分子在平衡态或远离平衡态时的瞬时构象变化,这依赖于轨迹理想化来识别特定的相互转换状态。基于隐马尔可夫模型(HMM)的传统轨迹理想化方法需要对所研究的系统有大量的先验知识、人工干预以及对状态数量和转移概率的假设。在此,我们提出一种使用长短期记忆(LSTM)的深度学习框架来自动进行轨迹理想化,称为Kin-SiM。我们的方法采用在模拟数据上预训练的神经网络来学习多维FRET轨迹中的高阶相关性。在无需用户输入马尔可夫假设的情况下,经过训练的LSTM网络直接对FRET轨迹进行理想化,以提取潜在生物分子状态的数量、它们的状态间动力学以及相关的动力学参数。在基准smFRET数据集上,Kin-SiM实现了与基于传统HMM方法相似的性能,但所需的人工操作时间更少且偏差风险更低。我们进一步系统地评估了影响网络性能的关键训练因素,以确定将深度神经网络应用于smFRET数据分析时正确的超参数调整。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验