Ivošević Bojana, Pajević Nina, Brdar Sanja, Waqar Rana, Khan Maryam, Valente João
BioSense Institute - Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, 21101, Novi Sad, Serbia.
Farmevo Technologies, 10016, New York, USA.
Sci Data. 2025 Jan 14;12(1):66. doi: 10.1038/s41597-025-04437-7.
This study highlights the vital role of high-resolution (HR), open-source land cover maps for food security, land use planning, and environmental protection. The scarcity of freely available HR datasets underscores the importance of multi-spectral HR aerial images. We used unmanned aerial vehicle (UAV) to capture images for a centimeter-level orthomosaics, facilitating advanced remote sensing and spatial analysis. Our method compares the efficacy and accuracy of object-based image analysis (OBIA) combined with random forest and convolutional neural networks (CNN) for land cover classification. We produced detailed land cover maps for 27 varied landscapes across Serbia, identifying nine unique land cover classes and assessing human impact on natural habitats. This resulted in a valuable dataset of HR multi-spectral orthomosaics across ecological zones, alongside land cover classification with extensive metrics and training data for each site. This dataset is a valuable resource for researchers working on habitats mapping and assessment for biodiversity monitoring studies on one side and researchers working on novel machine learning methods for land cover classification.
本研究突出了高分辨率(HR)开源土地覆盖地图在粮食安全、土地利用规划和环境保护方面的重要作用。免费提供的高分辨率数据集的稀缺凸显了多光谱高分辨率航空图像的重要性。我们使用无人机(UAV)获取图像以生成厘米级正射镶嵌图,便于进行先进的遥感和空间分析。我们的方法比较了基于对象的图像分析(OBIA)结合随机森林和卷积神经网络(CNN)进行土地覆盖分类的有效性和准确性。我们为塞尔维亚的27种不同景观制作了详细的土地覆盖地图,识别出9种独特的土地覆盖类别,并评估了人类对自然栖息地的影响。这产生了一个跨越生态区域的高分辨率多光谱正射镶嵌图的宝贵数据集,以及每个地点具有广泛指标和训练数据的土地覆盖分类。该数据集对于一方面致力于栖息地绘图和生物多样性监测研究评估的研究人员,以及另一方面致力于土地覆盖分类新机器学习方法的研究人员而言,都是宝贵的资源。