Suppr超能文献

SCAI-Net:一种用于颅骨成形术的人工智能驱动框架,利用CT图像生成优化、快速且资源高效的颅骨植入物。

SCAI-Net: An AI-driven framework for optimized, fast, and resource-efficient skull implant generation for cranioplasty using CT images.

作者信息

Juneja Mamta, Poddar Aditya, Kharbanda Maanya, Sudhir Agrima, Gupta Sanya, Joshi Prithul, Goel Aparna, Fatma Noor, Gupta Meenal, Tarkas Sheetal, Gupta Vipin, Jindal Prashant

机构信息

University Institute of Engineering and Technology, Panjab University, Chandigarh-160014, India.

Easiofy Solutions Private Limited, Greater Noida, India.

出版信息

Comput Biol Med. 2025 Aug;194:110504. doi: 10.1016/j.compbiomed.2025.110504. Epub 2025 Jun 7.

Abstract

Skull damage caused by craniectomy or trauma necessitates accurate and precise Patient-Specific Implant (PSI) design to restore the cranial cavity. Conventional Computer-Aided Design (CAD)-based methods for PSI design are highly infrastructure-intensive, require specialised skills, and are time-consuming, resulting in prolonged patient wait times. Recent advancements in Artificial Intelligence (AI) provide automated, faster and scalable alternatives. This study introduces the Skull Completion using AI Network (SCAI-Net) framework, a deep-learning-based approach for automated cranial defect reconstruction using Computer Tomography (CT) images. The framework proposes two defect reconstruction variants: SCAI-Net-SDR (Subtraction-based Defect Reconstruction), which first reconstructs the full skull, then performs binary subtraction to obtain the reconstructed defect, and SCAI-Net-DDR (Direct Defect Reconstruction), which generates the reconstructed defect directly without requiring full-skull reconstruction. To enhance model robustness, the SCAI-Net was trained on an augmented dataset of 2760 images, created by combining MUG500+ and SkullFix datasets, featuring artificial defects across multiple cranial regions. Unlike subtraction-based SCAI-Net-SDR, which requires full-skull reconstruction before binary subtraction, and conventional CAD-based methods, which rely on interpolation or mirroring, SCAI-Net-DDR significantly reduces computational overhead. By eliminating the full-skull reconstruction step, DDR reduces training time by 66 % (85 min vs. 250 min for SDR) and achieves a 99.996 % faster defect reconstruction time compared to CAD (0.1s vs. 2400s). Based on the quantitative evaluation conducted on the SkullFix test cases, SCAI-Net-DDR emerged as the leading model among all evaluated approaches. SCAI-Net-DDR achieved the highest Dice Similarity Coefficient (DSC: 0.889), a low Hausdorff Distance (HD: 1.856 mm), and a superior Structural Similarity Index (SSIM: 0.897). Similarly, within the subset of subtraction-based reconstruction approaches evaluated, SCAI-Net-SDR demonstrated competitive performance, achieving the best HD (1.855 mm) and the highest SSIM (0.889), confirming its strong standing among methods using the subtraction paradigm. SCAI-Net generates reconstructed defects, which undergo post-processing to ensure manufacturing readiness. Steps include surface smoothing, thickness validation and edge preparation for secure fixation and seamless digital manufacturing compatibility. End-to-end implant generation time for DDR demonstrated a 96.68 % reduction (93.5 s), while SDR achieved a 96.64 % reduction (94.6 s), significantly outperforming CAD-based methods (2820s). Finite Element Analysis (FEA) confirmed the SCAI-Net-generated implants' robust load-bearing capacity under extreme loading (1780N) conditions, while edge gap analysis validated precise anatomical fit. Clinical validation further confirmed boundary accuracy, curvature alignment, and secure fit within cranial cavity. These results position SCAI-Net as a transformative, time-efficient, and resource-optimized solution for AI-driven cranial defect reconstruction and implant generation.

摘要

颅骨切除术或外伤导致的颅骨损伤需要精确的个性化植入物(PSI)设计来修复颅腔。传统的基于计算机辅助设计(CAD)的PSI设计方法对基础设施要求很高,需要专业技能,而且耗时较长,导致患者等待时间延长。人工智能(AI)的最新进展提供了自动化、更快且可扩展的替代方案。本研究介绍了使用人工智能网络的颅骨完成(SCAI-Net)框架,这是一种基于深度学习的方法,用于使用计算机断层扫描(CT)图像自动重建颅骨缺损。该框架提出了两种缺损重建变体:SCAI-Net-SDR(基于减法的缺损重建),它首先重建完整颅骨,然后进行二进制减法以获得重建的缺损;以及SCAI-Net-DDR(直接缺损重建),它无需完整颅骨重建即可直接生成重建的缺损。为了提高模型的鲁棒性,SCAI-Net在一个由2760张图像组成的增强数据集上进行训练,该数据集通过合并MUG500+和SkullFix数据集创建,具有多个颅骨区域的人工缺损。与基于减法的SCAI-Net-SDR不同,后者在二进制减法之前需要完整颅骨重建,而传统的基于CAD的方法依赖于插值或镜像,SCAI-Net-DDR显著减少了计算开销。通过消除完整颅骨重建步骤,DDR将训练时间减少了66%(SDR为250分钟,DDR为85分钟),与CAD相比,缺损重建时间快了99.996%(CAD为2400秒,DDR为0.1秒)。基于对SkullFix测试案例进行的定量评估,SCAI-Net-DDR在所有评估方法中脱颖而出。SCAI-Net-DDR实现了最高的骰子相似系数(DSC:0.889)、较低的豪斯多夫距离(HD:1.856毫米)和优异的结构相似性指数(SSIM:0.897)。同样,在评估的基于减法的重建方法子集中,SCAI-Net-SDR表现出有竞争力的性能,实现了最佳的HD(1.855毫米)和最高的SSIM(0.889),证实了其在使用减法范式的方法中的强大地位。SCAI-Net生成重建的缺损,这些缺损经过后处理以确保可用于制造。步骤包括表面平滑、厚度验证和边缘处理,以确保牢固固定和无缝数字制造兼容性。DDR的端到端植入物生成时间减少了96.68%(93.5秒),而SDR减少了96.64%(94.6秒),明显优于基于CAD的方法(2820秒)。有限元分析(FEA)证实了SCAI-Net生成的植入物在极端加载(1780N)条件下具有强大的承载能力,而边缘间隙分析验证了精确的解剖贴合度。临床验证进一步证实了边界准确性、曲率对齐以及在颅腔内的牢固贴合。这些结果将SCAI-Net定位为一种变革性的、高效省时且资源优化的解决方案,用于人工智能驱动的颅骨缺损重建和植入物生成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验