Institute of Databases and Information Systems, Ulm University, 89081 Ulm, Germany.
Department of Clinical Psychology and Psychotherapy, Ulm University, 89081 Ulm, Germany.
Sensors (Basel). 2024 Jan 12;24(2):472. doi: 10.3390/s24020472.
As mobile devices have become a central part of our daily lives, they are also becoming increasingly important in research. In the medical context, for example, smartphones are used to collect ecologically valid and longitudinal data using Ecological Momentary Assessment (EMA), which is mostly implemented through questionnaires delivered via smart notifications. This type of data collection is intended to capture a patient's condition on a moment-to-moment and longer-term basis. To collect more objective and contextual data and to understand patients even better, researchers can not only use patients' input via EMA, but also use sensors as part of the Mobile Crowdsensing (MCS) approach. In this paper, we examine how researchers have embraced the topic of MCS in the context of EMA through a systematic literature review. This PRISMA-guided review is based on the databases PubMed, Web of Science, and EBSCOhost. It is shown through the results that both EMA research in general and the use of sensors in EMA research are steadily increasing. In addition, most of the studies reviewed used mobile apps to deliver EMA to participants, used a fixed-time prompting strategy, and used signal-contingent or interval-contingent self-assessment as sampling/assessment strategies. The most commonly used sensors in EMA studies are the accelerometer and GPS. In most studies, these sensors are used for simple data collection, but sensor data are also commonly used to verify study participant responses and, less commonly, to trigger EMA prompts. Security and privacy aspects are addressed in only a subset of mHealth EMA publications. Moreover, we found that EMA adherence was negatively correlated with the total number of prompts and was higher in studies using a microinteraction-based EMA (μEMA) approach as well as in studies utilizing sensors. Overall, we envision that the potential of the technological capabilities of smartphones and sensors could be better exploited in future, more automated approaches.
随着移动设备成为我们日常生活的核心部分,它们在研究中也变得越来越重要。例如,在医学领域,智能手机被用于使用生态瞬时评估(EMA)收集具有生态效度和纵向数据,这主要通过智能通知传递的问卷来实现。这种数据收集旨在实时和长期捕捉患者的病情。为了收集更客观和上下文相关的数据并更好地了解患者,研究人员不仅可以使用患者通过 EMA 的输入,还可以使用传感器作为移动众包感知(MCS)方法的一部分。在本文中,我们通过系统文献回顾研究了研究人员如何在 EMA 背景下接受 MCS 主题。该 PRISMA 指导的回顾基于 PubMed、Web of Science 和 EBSCOhost 数据库。结果表明,一般的 EMA 研究以及在 EMA 研究中使用传感器的研究都在稳步增加。此外,大多数回顾的研究都使用移动应用程序向参与者提供 EMA,使用固定时间提示策略,并使用信号相关或间隔相关的自我评估作为采样/评估策略。在 EMA 研究中最常用的传感器是加速度计和 GPS。在大多数研究中,这些传感器用于简单的数据收集,但传感器数据也常用于验证研究参与者的反应,较少用于触发 EMA 提示。只有一部分移动健康 EMA 出版物涉及安全和隐私方面。此外,我们发现 EMA 依从性与提示总数呈负相关,并且在使用基于微交互的 EMA(μEMA)方法的研究中和在利用传感器的研究中更高。总的来说,我们设想智能手机和传感器的技术能力的潜力可以在未来更自动化的方法中得到更好的利用。