Li Li, Shen Xuechun, Kuai Shuguang
Shanghai Frontiers Science Center of Artificial Intelligence and Deep Learning, Division of Arts and Sciences, NYU, New York University Shanghai, Shanghai, China.
NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai, China.
Psychon Bull Rev. 2025 Jan 14. doi: 10.3758/s13423-024-02616-y.
We examined the intricate mechanisms underlying visual processing of complex motion stimuli by measuring the detection sensitivity to contraction and expansion patterns and the discrimination sensitivity to the location of the center of motion (CoM) in various real and unreal optic flow stimuli. We conducted two experiments (N = 20 each) and compared responses to both "real" optic flow stimuli containing information about self-movement in a three-dimensional scene and "unreal" optic flow stimuli lacking such information. We found that detection sensitivity to contraction surpassed that to expansion patterns for unreal optic flow stimuli, whereas this trend was reversed for real optic flow stimuli. Furthermore, while discrimination sensitivity to the CoM location was not affected by stimulus duration for unreal optic flow stimuli, it showed a significant improvement when stimulus duration increased from 100 to 400 ms for real optic flow stimuli. These findings provide compelling evidence that the visual system employs distinct processing approaches for real versus unreal optic flow even when they are perfectly matched for two-dimensional global features and local motion signals. These differences reveal influences of self-movement in natural environments, enabling the visual system to uniquely process stimuli with significant survival implications.
我们通过测量对收缩和扩张模式的检测敏感度以及对各种真实和虚拟光流刺激中运动中心(CoM)位置的辨别敏感度,研究了复杂运动刺激视觉处理背后的复杂机制。我们进行了两个实验(每个实验N = 20),并比较了对包含三维场景中自我运动信息的“真实”光流刺激和缺乏此类信息的“虚拟”光流刺激的反应。我们发现,对于虚拟光流刺激,对收缩的检测敏感度超过了对扩张模式的检测敏感度,而对于真实光流刺激,这种趋势则相反。此外,虽然对于虚拟光流刺激,对CoM位置的辨别敏感度不受刺激持续时间的影响,但当真实光流刺激的持续时间从100毫秒增加到400毫秒时,辨别敏感度有显著提高。这些发现提供了令人信服的证据,表明即使真实和虚拟光流在二维全局特征和局部运动信号方面完全匹配,视觉系统对它们仍采用不同的处理方法。这些差异揭示了自然环境中自我运动的影响,使视觉系统能够独特地处理具有重大生存意义的刺激。