Perrine Shane A, Beirami Mohammad, Matchynski James I, Manwar Rayyan, Kallakuri Srinivasu, Conti Alana C, Avanaki Kamran
Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States.
Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States.
Photoacoustics. 2024 Dec 17;41:100680. doi: 10.1016/j.pacs.2024.100680. eCollection 2025 Feb.
Pattern recognition analysis in brain research has improved understanding of sensory processing and led to the identification of default brain networks in neuroimaging studies. The current study uses pattern recognition analysis to extend our previous findings showing conditioned fear learning and novelty-exposure (i.e. sham conditioning) equally increase Fos-dependent neuronal ensemble signal intensity in the prefrontal cortex (PFC) of rats as quantified by photoacoustic imaging (e.g. functional/molecular photoacoustic tomography). Here we use similarity metrics-based pattern recognition analysis to determine if neuronal ensemble activation patterns in the PFC are unique fear-conditioned compared to sham-conditioned rats. Our results show that a qualitatively-unique pattern in signal intensity exists only for the fear-conditioned group compared to sham-conditioned, behaviourally-naïve, or fear-conditioned vehicle control groups. These findings suggest that while the PFC is involved equally in novelty-exposure and fear learning, only highly coordinated behavioral tasks engage the PFC in a homogenous pattern of activity. This study also highlights the use of pattern recognition analysis using photoacoustic imaging data leading the way for future use of this computational approach to brain imaging.
大脑研究中的模式识别分析增进了我们对感觉处理的理解,并在神经影像学研究中促成了默认脑网络的识别。当前的研究运用模式识别分析来拓展我们之前的发现,即通过光声成像(如功能/分子光声断层扫描)量化显示,条件性恐惧学习和新奇刺激暴露(即假条件反射)同样会增加大鼠前额叶皮质(PFC)中Fos依赖的神经元集群信号强度。在此,我们使用基于相似性度量的模式识别分析来确定与假条件反射大鼠相比,PFC中的神经元集群激活模式是否为条件性恐惧所特有。我们的结果表明,与假条件反射、行为天真或条件性恐惧的载体对照组相比,信号强度中仅在条件性恐惧组存在定性上独特的模式。这些发现表明,虽然PFC同等程度地参与新奇刺激暴露和恐惧学习,但只有高度协调的行为任务才会使PFC以均匀的活动模式参与其中。这项研究还突出了利用光声成像数据进行模式识别分析,为这种计算方法在脑成像中的未来应用开辟了道路。