Tian Wenhan, Liu Yuzeng, Han Bo, Cheng Fengqi, Yang Kang, Hu Weiyuan, Ye Dongdong, Wu Sujun, Yang Jiping, Chen Qi, Hai Yong, Ritchie Robert O, He Guanping, Guan Juan
School of Materials Science and Engineering, Beihang University, Beijing, 100191, PR China.
Department of Orthopedics, Capital Medical University Affiliated Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, PR China.
Bioact Mater. 2024 Dec 25;45:584-598. doi: 10.1016/j.bioactmat.2024.11.036. eCollection 2025 Mar.
Through millions of years of evolution, bones have developed a complex and elegant hierarchical structure, utilizing tropocollagen and hydroxyapatite to attain an intricate balance between modulus, strength, and toughness. In this study, continuous fiber silk composites (CFSCs) of large size are prepared to mimic the hierarchical structure of natural bones, through the inheritance of the hierarchical structure of fiber silk and the integration with a polyester matrix. Due to the robust interface between the matrix and fiber silk, CFSCs show maintained stable long-term mechanical performance under wet conditions. During degradation, this material primarily undergoes host cell-mediated surface degradation, rather than bulk hydrolysis. We demonstrate significant capabilities of CFSCs in promoting vascularization and macrophage differentiation toward repair. A bone defect model further indicates the potential of CFSC for bone graft applications. Our belief is that the material family of CFSCs may promise a novel biomaterial strategy for yet to be achieved excellent regenerative implants.
经过数百万年的进化,骨骼形成了复杂而精妙的层级结构,利用原胶原蛋白和羟基磷灰石在模量、强度和韧性之间达到了复杂的平衡。在本研究中,通过继承纤维丝的层级结构并与聚酯基体相结合,制备了大尺寸的连续纤维丝复合材料(CFSCs)以模仿天然骨骼的层级结构。由于基体与纤维丝之间具有牢固的界面,CFSCs在潮湿条件下表现出稳定的长期力学性能。在降解过程中,这种材料主要经历宿主细胞介导的表面降解,而非本体水解。我们证明了CFSCs在促进血管生成和巨噬细胞向修复方向分化方面具有显著能力。骨缺损模型进一步表明了CFSC在骨移植应用中的潜力。我们相信,CFSCs材料家族可能为尚未实现的优异再生植入物提供一种新型生物材料策略。