Suppr超能文献

一种黄素腺嘌呤二核苷酸(FAD)依赖性葡萄糖6-脱氢酶的发现与特性研究

Discovery and characterization of an FAD-dependent glucose 6-dehydrogenase.

作者信息

Fujii Takahiro, Honda Michinari, Fujii Wataru, Shimada Yoshimi, Takeuchi Michiki, Ogawa Jun

机构信息

Ikeda Food Research Co., Ltd, Fukuyama Hiroshima, Japan.

Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.

出版信息

J Biol Chem. 2025 Mar;301(3):108189. doi: 10.1016/j.jbc.2025.108189. Epub 2025 Jan 13.

Abstract

Many patients with diabetes use self-measurement devices for blood glucose to understand their blood glucose levels. Most of these devices use FAD-dependent glucose dehydrogenase (FAD-GDH) to determine blood glucose levels. For this purpose, FAD-GDHs specifically oxidizing glucose among the sugars present in blood are required. Many FAD-GDHs with high substrate specificity have been reported previously; however, their substrate specificity is insufficient as they also react with xylose. Therefore, we aimed to identify FAD-GDHs without xylose reactivity. We screened and obtained a new enzyme from Colletotrichum plurivorum (CpGDH). CpGDH showed high activity to glucose in the presence of electron mediators but low activity to xylose. We prepared the glucose oxidation products using CpGDH and subjected to TLC, HPLC, mass spectrometry, and NMR analyses. The results demonstrated that CpGDH is a previously unknown FAD-dependent glucose 6-dehydrogenase (FAD-G6DH) that oxidizes glucose to glucuronic acid. The stoichiometric ratio of the substrate and electron mediator was 1:2, suggesting that CpGDH catalyzes two-step oxidation reactions, including oxidation of primary alcohols to aldehydes and of aldehydes to carboxylic acids. We concluded that CpGDH has the unique substrate-binding manner based on the result of docking simulation of CpGDH with a substrate glucose. We then constructed a phylogenetic tree of carbohydrate-related flavoproteins including FAD-G6DHs, indicating that FAD-G6DHs are different from the known FAD-dependent oxidoreductases. Overall, this study is the first to report FAD-G6DHs. These results will likely contribute to the development of more accurate blood glucose sensors and further research on the metabolisms of glucosides and their metabolites.

摘要

许多糖尿病患者使用血糖自我测量设备来了解自己的血糖水平。这些设备大多使用黄素腺嘌呤二核苷酸依赖的葡萄糖脱氢酶(FAD-GDH)来测定血糖水平。为此,需要在血液中存在的糖类中特异性氧化葡萄糖的FAD-GDH。此前已报道了许多具有高底物特异性的FAD-GDH;然而,它们的底物特异性不足,因为它们也会与木糖发生反应。因此,我们旨在鉴定不与木糖发生反应的FAD-GDH。我们进行了筛选,并从多聚炭疽菌(CpGDH)中获得了一种新酶。CpGDH在有电子介质存在的情况下对葡萄糖表现出高活性,但对木糖的活性较低。我们使用CpGDH制备了葡萄糖氧化产物,并进行了薄层色谱、高效液相色谱、质谱和核磁共振分析。结果表明,CpGDH是一种此前未知的黄素腺嘌呤二核苷酸依赖的葡萄糖6-脱氢酶(FAD-G6DH),它将葡萄糖氧化为葡萄糖醛酸。底物与电子介质的化学计量比为1:2,这表明CpGDH催化两步氧化反应,包括伯醇氧化为醛以及醛氧化为羧酸。基于CpGDH与底物葡萄糖的对接模拟结果,我们得出CpGDH具有独特的底物结合方式。然后,我们构建了包括FAD-G6DH在内的碳水化合物相关黄素蛋白的系统发育树,表明FAD-G6DH与已知的黄素腺嘌呤二核苷酸依赖的氧化还原酶不同。总体而言,本研究首次报道了FAD-G6DH。这些结果可能有助于开发更精确的血糖传感器,并进一步研究糖苷及其代谢产物的代谢。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4e5/11871447/92b3948af44a/gr1.jpg

相似文献

1
Discovery and characterization of an FAD-dependent glucose 6-dehydrogenase.
J Biol Chem. 2025 Mar;301(3):108189. doi: 10.1016/j.jbc.2025.108189. Epub 2025 Jan 13.
3
Identification and characterization of thermostable glucose dehydrogenases from thermophilic filamentous fungi.
Appl Microbiol Biotechnol. 2017 Jan;101(1):173-183. doi: 10.1007/s00253-016-7754-7. Epub 2016 Aug 10.
4
Novel fungal FAD glucose dehydrogenase derived from Aspergillus niger for glucose enzyme sensor strips.
Biosens Bioelectron. 2017 Jan 15;87:305-311. doi: 10.1016/j.bios.2016.08.053. Epub 2016 Aug 18.
5
Effects of Cross-linker Chemistry on Bioelectrocatalytic Reactions in a Redox Cross-linked Network of Glucose Dehydrogenase and Thionine.
ACS Appl Mater Interfaces. 2024 Aug 21;16(33):44004-44017. doi: 10.1021/acsami.4c08782. Epub 2024 Aug 12.
6
Improvement in the thermal stability of Mucor prainii-derived FAD-dependent glucose dehydrogenase via protein chimerization.
Enzyme Microb Technol. 2020 Jan;132:109387. doi: 10.1016/j.enzmictec.2019.109387. Epub 2019 Aug 3.
7
Evaluation of accuracy of FAD-GDH- and mutant Q-GDH-based blood glucose monitors in multi-patient populations.
Clin Chim Acta. 2014 Jun 10;433:28-33. doi: 10.1016/j.cca.2014.02.023. Epub 2014 Mar 5.
9
FAD dependent glucose dehydrogenases - Discovery and engineering of representative glucose sensing enzymes.
Bioelectrochemistry. 2020 Apr;132:107414. doi: 10.1016/j.bioelechem.2019.107414. Epub 2019 Nov 20.
10
Expression, characterization and mutagenesis of an FAD-dependent glucose dehydrogenase from Aspergillus terreus.
Enzyme Microb Technol. 2015 Jan;68:43-9. doi: 10.1016/j.enzmictec.2014.10.002. Epub 2014 Oct 23.

本文引用的文献

1
Fundamental insight into redox enzyme-based bioelectrocatalysis.
Biosci Biotechnol Biochem. 2022 Jan 24;86(2):141-156. doi: 10.1093/bbb/zbab197.
4
Applications of Microbial Enzymes in Food Industry.
Food Technol Biotechnol. 2018 Mar;56(1):16-30. doi: 10.17113/ftb.56.01.18.5491.
5
MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms.
Mol Biol Evol. 2018 Jun 1;35(6):1547-1549. doi: 10.1093/molbev/msy096.
6
Multiplicity of enzymatic functions in the CAZy AA3 family.
Appl Microbiol Biotechnol. 2018 Mar;102(6):2477-2492. doi: 10.1007/s00253-018-8784-0. Epub 2018 Feb 6.
7
Diabetic kidney disease.
Nat Rev Dis Primers. 2015 Jul 30;1:15018. doi: 10.1038/nrdp.2015.18.
9
Structural analysis of fungus-derived FAD glucose dehydrogenase.
Sci Rep. 2015 Aug 27;5:13498. doi: 10.1038/srep13498.
10
Diabetic retinopathy - ocular complications of diabetes mellitus.
World J Diabetes. 2015 Apr 15;6(3):489-99. doi: 10.4239/wjd.v6.i3.489.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验