Suppr超能文献

依赖黄素腺嘌呤二核苷酸的葡萄糖脱氢酶——代表性葡萄糖感应酶的发现与工程改造。

FAD dependent glucose dehydrogenases - Discovery and engineering of representative glucose sensing enzymes.

机构信息

Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA.

Life Science Research Center and Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.

出版信息

Bioelectrochemistry. 2020 Apr;132:107414. doi: 10.1016/j.bioelechem.2019.107414. Epub 2019 Nov 20.

Abstract

The history of the development of glucose sensors goes hand-in-hand with the history of the discovery and the engineering of glucose-sensing enzymes. Glucose oxidase (GOx) has been used for glucose sensing since the development of the first electrochemical glucose sensor. The principle utilizing oxygen as the electron acceptor is designated as the first-generation electrochemical enzyme sensors. With increasing demand for hand-held and cost-effective devices for the "self-monitoring of blood glucose (SMBG)", second-generation electrochemical sensor strips employing electron mediators have become the most popular platform. To overcome the inherent drawback of GOx, namely, the use of oxygen as the electron acceptor, various glucose dehydrogenases (GDHs) have been utilized in second-generation principle-based sensors. Among the various enzymes employed in glucose sensors, GDHs harboring FAD as the redox cofactor, FADGDHs, especially those derived from fungi, fFADGDHs, are currently the most popular enzymes in the sensor strips of second-generation SMBG sensors. In addition, the third-generation principle, employing direct electron transfer (DET), is considered the most elegant approach and is ideal for use in electrochemical enzyme sensors. However, glucose oxidoreductases capable of DET are limited. One of the most prominent GDHs capable of DET is a bacteria-derived FADGDH complex (bFADGDH). bFADGDH has three distinct subunits; the FAD harboring the catalytic subunit, the small subunit, and the electron-transfer subunit, which makes bFADGDH capable of DET. In this review, we focused on the two representative glucose sensing enzymes, fFADGDHs and bFADGDHs, by presenting their discovery, sources, and protein and enzyme properties, and the current engineering strategies to improve their potential in sensor applications.

摘要

葡萄糖传感器的发展历史与葡萄糖传感酶的发现和工程应用紧密相关。自第一台电化学葡萄糖传感器问世以来,葡萄糖氧化酶(GOx)就一直被用于葡萄糖传感。利用氧气作为电子受体的原理被指定为第一代电化学酶传感器。随着对手持式和经济型设备用于“自我监测血糖(SMBG)”的需求不断增加,采用电子介体的第二代电化学传感器条已成为最受欢迎的平台。为了克服 GOx 作为电子受体的固有缺点,各种葡萄糖脱氢酶(GDH)已被用于第二代基于原理的传感器中。在用于葡萄糖传感器的各种酶中,含有 FAD 作为氧化还原辅因子的 GDHs、FADGDHs,特别是源自真菌的 fFADGDHs,目前是第二代 SMBG 传感器传感器条中最受欢迎的酶。此外,采用直接电子转移(DET)的第三代原理被认为是最优雅的方法,非常适合用于电化学酶传感器。然而,能够进行 DET 的葡萄糖氧化还原酶有限。最突出的能够进行 DET 的 GDH 之一是源自细菌的 FADGDH 复合物(bFADGDH)。bFADGDH 由三个不同的亚基组成;含有催化亚基的 FAD、小亚基和电子转移亚基,这使得 bFADGDH 能够进行 DET。在这篇综述中,我们重点介绍了两种有代表性的葡萄糖传感酶,fFADGDHs 和 bFADGDHs,介绍了它们的发现、来源以及蛋白质和酶的特性,以及当前用于提高其在传感器应用中潜力的工程策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验