Suppr超能文献

用于全氟和多氟烷基物质非目标筛查及回顾性数据挖掘的双层同源网络方法

Two-layer homolog network approach for PFAS nontarget screening and retrospective data mining.

作者信息

Jiao Zhaoyu, Taniyasu Sachi, Yu Nanyang, Wang Xuebing, Yamashita Nobuyoshi, Wei Si

机构信息

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China.

National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, Japan.

出版信息

Nat Commun. 2025 Jan 15;16(1):688. doi: 10.1038/s41467-025-56035-1.

Abstract

The rapid increase of novel per- and polyfluoroalkyl substances (PFAS) raises concerns, while their identification remains challenging. Here, we develop a two-layer homolog network approach for PFAS nontarget screening using mass spectrometry. The first layer constructs networks between homologs, with evaluation showing that it filters 94% of false candidates. The second layer builds a network between classes to expedite the identification of PFAS. We detected 94 PFAS in twelve waterproof products and two related industrial sludges, including 36 novel PFAS not previously reported in any sample. A local dataset is constructed for retrospective analysis by re-analyzing our previous samples, revealing fifteen novel PFAS in samples collected in 2005. The retrieval of the public database MassIVE uncovers novel PFAS in samples from seven countries. Here, we reveal the historic and global presence of novel PFAS, providing guidance for the management and policy-making concerning persistent chemicals.

摘要

新型全氟和多氟烷基物质(PFAS)的迅速增加引发了人们的关注,而其识别仍然具有挑战性。在此,我们开发了一种用于PFAS非靶向筛查的双层同系物网络方法,该方法利用质谱技术。第一层构建同系物之间的网络,评估显示其能过滤掉94%的假阳性候选物。第二层构建类别之间的网络以加快PFAS的识别。我们在十二种防水产品和两种相关工业污泥中检测到94种PFAS,其中包括36种此前在任何样品中均未报道过的新型PFAS。通过重新分析我们之前的样品构建了一个本地数据集用于回顾性分析,结果在2005年采集的样品中发现了15种新型PFAS。对公共数据库MassIVE的检索揭示了来自七个国家的样品中的新型PFAS。在此,我们揭示了新型PFAS的历史存在和全球分布情况,为有关持久性化学品的管理和政策制定提供指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2eb/11735632/800e5142f7f2/41467_2025_56035_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验