Suppr超能文献

基于神经网络和ARIMA模型的矿井涌水量预测优化模型构建与应用

Construction and application of optimized model for mine water inflow prediction based on neural network and ARIMA model.

作者信息

Gong Xiaoyu, Li Bo, Yang Yu, Li MengHua, Li Tao, Zhang Beibei, Zheng Lulin, Duan Hongfei, Liu Pu, Hu Xin, Xiang Xin, Zhou Xinju

机构信息

Key Laboratory of Karst Georesources and Environment, College of Resources and Environmental Engineering, Guizhou University, Ministry of Education, Guizhou University, Guiyang, 550025, China.

School of Mines and Civil Engineering, Liupanshui Normal University, Liupanshui, 553004, China.

出版信息

Sci Rep. 2025 Jan 15;15(1):2009. doi: 10.1038/s41598-025-85477-2.

Abstract

Mine water influx is a significant geological hazard during mine development, influenced by various factors such as geological conditions, hydrology, climate, and mining techniques. This phenomenon is characterized by non-linearity and high complexity, leading to frequent water accidents in coal mines. These accidents not only impact coal production quality but also jeopardize the safety of mine staff. In order to better predict the amount of water surging in mines and to provide an important basis for mine water damage prevention work, based on the time series data of mine water influx from January 2020 to February 2023 in Northern Guizhou Province Longfeng Coal Mine, the BP-ARIMA prediction model was established by combining the BP neural network model and ARIMA autoregressive sliding average model, It also predicted the mine influx for a total of 6 months from July 2022 to February 2023, and compared the prediction results with four models, namely, BP neural network model, ARIMA autoregressive sliding average model, traditional method of Large well method, and GM(1,1) grey model, and used the absolute relative error as the calculation of model accuracy. The results show that the established BP-ARIMA(3,1,1) prediction model is much closer to the actual value, with an average absolute relative error of 1.02% and a maximum absolute relative error of 3.036%, and the goodness of fit R² was 0.93, which is much better than the other four single models, and substantially improves the prediction accuracy of mine water influx. Furthermore, utilizing the BP-ARIMA model, future predictions for mine water influx in Longfeng Mine were made, offering a scientific foundation for effective prevention and control measures.

摘要

矿井突水是矿井开发过程中的重大地质灾害,受地质条件、水文、气候和采矿技术等多种因素影响。这种现象具有非线性和高度复杂性,导致煤矿水害事故频发。这些事故不仅影响煤炭生产质量,还危及矿井工作人员的安全。为了更好地预测矿井涌水量,为矿井水害防治工作提供重要依据,基于贵州省北部龙凤煤矿2020年1月至2023年2月的矿井涌水时间序列数据,结合BP神经网络模型和ARIMA自回归滑动平均模型建立了BP-ARIMA预测模型,对2022年7月至2023年2月共6个月的矿井涌水量进行了预测,并将预测结果与BP神经网络模型、ARIMA自回归滑动平均模型、传统大井法和GM(1,1)灰色模型四种模型进行了比较,以绝对相对误差作为模型精度的计算指标。结果表明,所建立的BP-ARIMA(3,1,1)预测模型与实际值更为接近,平均绝对相对误差为1.02%,最大绝对相对误差为3.036%,拟合优度R²为0.93,远优于其他四个单一模型,大幅提高了矿井涌水量的预测精度。此外,利用BP-ARIMA模型对龙凤煤矿未来矿井涌水量进行了预测,为采取有效的防治措施提供了科学依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c1b/11735673/8acc904219da/41598_2025_85477_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验