Suppr超能文献

自回归综合移动平均模型与广义回归神经网络模型在中国肾综合征出血热预测中的比较:一项时间序列研究。

Comparison of autoregressive integrated moving average model and generalised regression neural network model for prediction of haemorrhagic fever with renal syndrome in China: a time-series study.

机构信息

School of Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

出版信息

BMJ Open. 2019 Jun 16;9(6):e025773. doi: 10.1136/bmjopen-2018-025773.

Abstract

OBJECTIVES

Haemorrhagic fever with renal syndrome (HFRS) is a serious threat to public health in China, accounting for almost 90% cases reported globally. Infectious disease prediction may help in disease prevention despite some uncontrollable influence factors. This study conducted a comparison between a hybrid model and two single models in forecasting the monthly incidence of HFRS in China.

DESIGN

Time-series study.

SETTING

The People's Republic of China.

METHODS

Autoregressive integrated moving average (ARIMA) model, generalised regression neural network (GRNN) model and hybrid ARIMA-GRNN model were constructed by R V.3.4.3 software. The monthly reported incidence of HFRS from January 2011 to May 2018 were adopted to evaluate models' performance. Root mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) were adopted to evaluate these models' effectiveness. Spatial stratified heterogeneity of the time series was tested by month and another GRNN model was built with a new series.

RESULTS

The monthly incidence of HFRS in the past several years showed a slight downtrend and obvious seasonal variation. A total of four plausible ARIMA models were built and ARIMA(2,1,1) (2,1,1) model was selected as the optimal model in HFRS fitting. The smooth factors of the basic GRNN model and the hybrid model were 0.027 and 0.043, respectively. The single ARIMA model was the best in fitting part (MAPE=9.1154, MAE=89.0302, RMSE=138.8356) while the hybrid model was the best in prediction (MAPE=17.8335, MAE=152.3013, RMSE=196.4682). GRNN model was revised by building model with new series and the forecasting performance of revised model (MAPE=17.6095, MAE=163.8000, RMSE=169.4751) was better than original GRNN model (MAPE=19.2029, MAE=177.0356, RMSE=202.1684).

CONCLUSIONS

The hybrid ARIMA-GRNN model was better than single ARIMA and basic GRNN model in forecasting monthly incidence of HFRS in China. It could be considered as a decision-making tool in HFRS prevention and control.

摘要

目的

肾综合征出血热(HFRS)是中国公共卫生的严重威胁,占全球报告病例的近 90%。传染病预测可能有助于疾病预防,尽管存在一些不可控的影响因素。本研究比较了混合模型和两种单模型在中国预测 HFRS 月发病率中的应用。

设计

时间序列研究。

地点

中华人民共和国。

方法

采用 R V.3.4.3 软件构建自回归综合移动平均(ARIMA)模型、广义回归神经网络(GRNN)模型和混合 ARIMA-GRNN 模型。采用 2011 年 1 月至 2018 年 5 月的 HFRS 月报告发病率来评价模型的性能。采用均方根误差(RMSE)、平均绝对误差(MAE)和平均绝对百分比误差(MAPE)来评价这些模型的效果。通过月份检验时间序列的空间分层异质性,并构建另一个新系列的 GRNN 模型。

结果

过去几年 HFRS 的月发病率呈轻微下降趋势,且具有明显的季节性变化。共建立了四个合理的 ARIMA 模型,其中 ARIMA(2,1,1)(2,1,1)模型被选为 HFRS 拟合的最佳模型。基本 GRNN 模型和混合模型的平滑因子分别为 0.027 和 0.043。在拟合部分,单 ARIMA 模型(MAPE=9.1154,MAE=89.0302,RMSE=138.8356)表现最好,而混合模型(MAPE=17.8335,MAE=152.3013,RMSE=196.4682)在预测方面表现最好。通过建立新系列的模型对 GRNN 模型进行修正,修正后的模型(MAPE=17.6095,MAE=163.8000,RMSE=169.4751)的预测性能优于原始 GRNN 模型(MAPE=19.2029,MAE=177.0356,RMSE=202.1684)。

结论

混合 ARIMA-GRNN 模型在预测中国 HFRS 月发病率方面优于单 ARIMA 和基本 GRNN 模型。它可以作为 HFRS 防控的决策工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da0e/6589045/40c2d0abced8/bmjopen-2018-025773f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验