Suppr超能文献

迈向周围神经刺激(PNS)的安全协议:一种计算与实验方法

Toward Safety Protocols for Peripheral Nerve Stimulation (PNS): A Computational and Experimental Approach.

作者信息

Du Jinze, Morales Andres, Kosta Pragya, Martinez-Navarrete Gema, Warren David J, Fernandez Eduardo, Bouteiller Jean-Marie C, McCreery Douglas C, Lazzi Gianluca

机构信息

Department of Electrical Engineering and ITEMS, University of Southern California, Los Angeles, California, USA.

Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA.

出版信息

Bioelectromagnetics. 2025 Jan;46(1):e22533. doi: 10.1002/bem.22533.

Abstract

As the clinical applicability of peripheral nerve stimulation (PNS) expands, the need for PNS-specific safety criteria becomes pressing. This study addresses this need, utilizing a novel machine learning and computational bio-electromagnetics modeling platform to establish a safety criterion that captures the effects of fields and currents induced on axons. Our approach is comprised of three steps: experimentation, model creation, and predictive simulation. We collected high-resolution images of control and stimulated rat sciatic nerve samples at varying stimulation intensities and performed high-resolution image segmentation. These segmented images were used to train machine learning tools for the automatic classification of morphological properties of control and stimulated PNS nerves. Concurrently, we utilized our quasi-static Admittance Method-NEURON (AM-NEURON) computational platform to create realistic nerve models and calculate induced currents and charges, both critical elements of nerve safety criteria. These steps culminate in a cellular-level correlation between morphological changes and electrical stimulation parameters. This correlation informs the determination of thresholds of electrical parameters that are found to be associated with damage, such as maximum cell charge density. The proposed methodology and resulting criteria combine experimental findings with computational modeling to generate a safety threshold curve that captures the relationship between stimulation current and the potential for axonal damage. Although focused on a specific exposure condition, the approach presented here marks a step towards developing context-specific safety criteria in PNS neurostimulation, encouraging similar analyses across varied neurostimulation scenarios. Bioelectromagnetics.

摘要

随着周围神经刺激(PNS)临床应用范围的扩大,制定PNS特有的安全标准变得迫在眉睫。本研究满足了这一需求,利用一种新型的机器学习和计算生物电磁学建模平台,建立了一个能够捕捉轴突上感应场和电流影响的安全标准。我们的方法包括三个步骤:实验、模型创建和预测模拟。我们采集了不同刺激强度下对照和受刺激大鼠坐骨神经样本的高分辨率图像,并进行了高分辨率图像分割。这些分割后的图像用于训练机器学习工具,以自动分类对照和受刺激PNS神经的形态学特性。同时,我们利用准静态导纳方法 - 神经元(AM - NEURON)计算平台创建逼真的神经模型,并计算感应电流和电荷,这两者都是神经安全标准的关键要素。这些步骤最终在形态变化与电刺激参数之间建立了细胞水平的相关性。这种相关性有助于确定与损伤相关的电参数阈值,例如最大细胞电荷密度。所提出的方法和所得标准将实验结果与计算建模相结合,生成一条安全阈值曲线,该曲线捕捉了刺激电流与轴突损伤可能性之间的关系。尽管本研究聚焦于特定的暴露条件,但此处提出的方法标志着朝着在PNS神经刺激中制定特定情境安全标准迈出了一步,鼓励在各种神经刺激场景中进行类似分析。生物电磁学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08f3/11891759/b4eb121655d7/nihms-2042552-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验