Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:4416-4419. doi: 10.1109/EMBC46164.2021.9631068.
Electrical stimulation of peripheral nerves has long been used and proven effective in restoring function caused by disease or injury. Accurate placement of electrodes is often critical to properly excite the nerve and yield the desired outcome. Computational modeling is becoming an important tool that can guide the rapid development and optimization of such implantable neural stimulation devices. Here, we developed a heterogeneous very high-resolution computational model of a realistic peripheral nerve stimulated by a current source through cuff electrodes. We then calculated the current distribution inside the nerve and investigated the effect of electrodes spacing on current penetration. In the present study, we first describe model implementation and calibration; we then detail the methodology we use to calculate current distribution and apply it to characterize the effect of electrodes distance on current penetration. Our computational results indicate that when the source and return cuff electrodes are placed close to each other, the penetration depth in the nerve is shallower than the cases in which the electrode distance is larger. This study outlines the utility of the proposed computational methods and anatomically correct high-resolution models in guiding and optimizing experimental nerve stimulation protocols.
电刺激外周神经在恢复疾病或损伤引起的功能方面已经得到了长期的应用和验证。电极的准确放置对于正确刺激神经和产生预期的结果通常是至关重要的。计算建模正在成为一种重要的工具,可以指导这种可植入神经刺激设备的快速开发和优化。在这里,我们开发了一种通过袖带电极对真实外周神经进行电流刺激的异质超高分辨率计算模型。然后,我们计算了神经内部的电流分布,并研究了电极间距对电流穿透的影响。在本研究中,我们首先描述了模型的实现和校准;然后详细介绍了我们用于计算电流分布的方法,并应用该方法来描述电极距离对电流穿透的影响。我们的计算结果表明,当源和回袖带电极彼此靠近放置时,神经中的穿透深度比电极距离较大的情况浅。本研究概述了所提出的计算方法和解剖学上正确的高分辨率模型在指导和优化实验性神经刺激方案方面的应用。