Liao Wanyi, Qing Fangzhu, Liu Qian, Wu Rongxuan, Zhou Congli, Chen Lina, Chen Yuanfu, Li Xuesong
Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China.
School of Integrated Circuit Science and Engineering (Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu 611731, China.
Nano Lett. 2025 Jan 29;25(4):1575-1583. doi: 10.1021/acs.nanolett.4c05658. Epub 2025 Jan 16.
Efficient oxygen evolution reaction (OER) catalysts with fast kinetics, high efficiency, and stability are essential for scalable green production of hydrogen. The rational design and fabrication of catalysts play a decisive role in their catalytic behavior. This work presents a high-entropy catalyst, FeCoNiCuMo-O, synthesized via carbothermal shock. Synergistic optimization of the adsorption evolution mechanism (AEM) and lattice oxygen mechanism (LOM) was realized and demonstrated through the combination of spectra/mass spectrometry and chemical probe analysis in FeCoNiCuMo-O. Furthermore, the robust stability is reinforced by the inherent properties conferred by the high-entropy design. The catalyst exhibits outstanding performance metrics, featuring an exceptionally low Tafel slope of 41 mV dec, a low overpotential of 272 mV at 10 mA cm, and a commendable endurance (a mere 2.2% voltage decline after a 240-h continuous chronopotentiometry test at 10 mA cm). This study advances the development of efficient, durable OER electrocatalysts for sustainable hydrogen production.
具有快速动力学、高效率和稳定性的高效析氧反应(OER)催化剂对于规模化绿色制氢至关重要。催化剂的合理设计与制备对其催化性能起着决定性作用。本文介绍了一种通过碳热冲击合成的高熵催化剂FeCoNiCuMo-O。通过光谱/质谱和化学探针分析相结合,在FeCoNiCuMo-O中实现并证明了吸附-演化机制(AEM)和晶格氧机制(LOM)的协同优化。此外,高熵设计赋予的固有特性增强了其强大的稳定性。该催化剂表现出优异的性能指标,具有41 mV dec的极低塔菲尔斜率、在10 mA cm时272 mV的低过电位以及值得称赞的耐久性(在10 mA cm下进行240小时连续计时电位法测试后,电压仅下降2.2%)。本研究推动了用于可持续制氢的高效、耐用OER电催化剂的发展。