Carmona Erico R, Sukeri Anandhakumar, Nelson Ronald, Rojo Cynthia, Vizcarra Arnoldo, Villacorta Aliro, Carevic Felipe, Marcos Ricard, Arriaza Bernardo, Lara Nelson, Martinez Tamara, Hernández-Saravia Lucas Patricio
Laboratorio de Bionanomateriales, Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Campus Huayquique, Iquique 1100000, Chile.
Núcleo de Investigación Aplicada e Innovación en Ciencias Biológicas, Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Av. Arturo Prat s/n, Campus Huayquique, Iquique 1100000, Chile.
Nanomaterials (Basel). 2025 Aug 27;15(17):1317. doi: 10.3390/nano15171317.
This work focuses on the sustainable green synthesis of magnetic iron oxide nanoparticles (FeONPs) using bioreductants derived from orange peel extracts for application in the efficient oxygen evolution reactions (OER). The synthesized catalysts were characterized using X-ray diffraction analysis, field emission scanning electron microscopy (FESEM), energy dispersive X-ray analysis (EDS), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and UV-visible spectroscopy. The FeONPs exhibit a well-defined spherical morphology with a larger Brunauer-Emmett-Teller surface area and a significant electrochemically active surface area. The green synthesis using orange peel extracts leads to an excellent electrocatalytic activity of the apparent spherical FeONPs (diameter of 9.62 ± 0.07 nm), which is explored for OER in an alkaline medium (1.0 M KOH) using linear-sweep and cyclic voltammetry techniques. These nanoparticles achieved a benchmark current density of 10 mA cm at a low overpotential of 0.3 V versus RHE, along with notable durability and stability. The outstanding OER electrocatalytic activity is attributed to their unique morphology, which offers large surface area and an ideal porous structure that enhances the adsorption and activation of reactive species. Furthermore, structural defects within the nanoparticles facilitate efficient electron transfer and migration of these species, further accelerating the OER process.
这项工作聚焦于利用橙皮提取物衍生的生物还原剂对磁性氧化铁纳米颗粒(FeONPs)进行可持续绿色合成,以应用于高效析氧反应(OER)。使用X射线衍射分析、场发射扫描电子显微镜(FESEM)、能量色散X射线分析(EDS)、透射电子显微镜(TEM)、傅里叶变换红外光谱(FTIR)和紫外可见光谱对合成的催化剂进行了表征。FeONPs呈现出明确的球形形态,具有较大的比表面积(Brunauer-Emmett-Teller)和显著的电化学活性表面积。使用橙皮提取物进行的绿色合成导致表观球形FeONPs(直径为9.62±0.07 nm)具有出色的电催化活性,利用线性扫描和循环伏安法技术在碱性介质(1.0 M KOH)中对其析氧反应进行了研究。这些纳米颗粒在相对于可逆氢电极(RHE)低至0.3 V的过电位下实现了10 mA cm的基准电流密度,同时具有显著的耐久性和稳定性。出色的析氧反应电催化活性归因于其独特的形态,这种形态提供了大表面积和理想的多孔结构,增强了活性物种的吸附和活化。此外,纳米颗粒内部的结构缺陷促进了这些物种的有效电子转移和迁移,进一步加速了析氧反应过程。