Suppr超能文献

莫尔工程原子层的纳米级结构与界面电化学反应活性

Nanoscale Structure and Interfacial Electrochemical Reactivity of Moiré-Engineered Atomic Layers.

作者信息

Van Winkle Madeline, Zhang Kaidi, Bediako D Kwabena

机构信息

Department of Chemistry, University of California, Berkeley, California 94720, United States.

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

出版信息

Acc Chem Res. 2025 Feb 4;58(3):415-427. doi: 10.1021/acs.accounts.4c00692. Epub 2025 Jan 16.

Abstract

ConspectusThe electronic properties of atomically thin van der Waals (vdW) materials can be precisely manipulated by vertically stacking them with a controlled offset (for example, a rotational offset─i.e., twist─between the layers, or a small difference in lattice constant) to generate moiré superlattices. In recent years, the application of this "twistronics" concept to interfacial electrochemistry has unveiled unique pathways for tailoring the electrochemical reactivity. This Account provides an overview of our work that leveraged a suite of structural characterization methods, such as interferometric four-dimensional scanning transmission electron microscopy, dark-field transmission electron microscopy, and scanning tunneling microscopy, along with nanoscale electrochemical measurement techniques, namely, scanning electrochemical cell microscopy (SECCM), to uncover and dissect the profound impact of electrode electronic structure, controlled by interlayer twist, on interfacial electron transfer kinetics. At the heart of our findings is the discovery that moiré engineering enables the isolation of thermodynamically unfavorable stacking configurations, or topological defects, that substantially increase the standard electron transfer rate constant at the solid-liquid interface beyond what has been measured on conventional, nontwisted two-dimensional (2D) materials. This enhancement in interfacial reactivity can be attributed to the localization of a high density of electronic states within these particular sites in the superlattice, a similar effect to that which occurs upon incorporation of physical defects or vacancies in an electrode material but instead using an atomically pristine surface with a highly tunable structure. Throughout our studies, understanding the nuances of the relationship between the preimposed moiré twist angle and the observed electron transfer kinetics has heavily relied on the interrogation of additional factors such as spontaneous superlattice reconstruction and three-dimensional localization of electronic states, illustrating the importance of combining electrochemical measurements with both nanoscale structural probes and theoretical modeling for designing and optimizing moiré-engineered electrodes. The insight afforded by our efforts in this space continues to deepen our understanding of the fundamental mechanisms governing electron transfer at electrochemical interfaces at large and also points to the revolutionary prospect of twistronics for advancing electrochemical technologies. While our electrochemical studies have, so far, focused largely on graphene-based moiré materials, we also offer a perspective on the promise of transition metal dichalcogenide (TMD)-based moirés as candidates for highly versatile (photo)electrode surfaces. Accordingly, we provide a discussion of our studies on the structural relaxation observed in moiré superlattices of TMDs, and we summarize our work combining SECCM with field-effect electrostatic gating of TMDs to deconvolute the influences of material conductivity and intrinsic electron transfer kinetics from the overall electrochemical response of a semiconducting 2D material. Overall, this body of work establishes a distinctive foundation for the design of a wide range of materials with tailored properties that can provide crucial insights into interfacial charge transfer chemistry─potentially serving as platforms for sensing, energy conversion, and electrocatalysis─in addition to the emergent exotic correlated electron physics that originally ignited intense interest in moiré twistronics.

摘要

概述

通过将原子级薄的范德华(vdW)材料垂直堆叠并控制其偏移量(例如,层间的旋转偏移——即扭曲,或晶格常数的微小差异)来生成莫尔超晶格,可以精确地操纵其电子特性。近年来,这种“扭曲电子学”概念在界面电化学中的应用揭示了定制电化学反应性的独特途径。本综述概述了我们的工作,我们利用了一系列结构表征方法,如干涉式四维扫描透射电子显微镜、暗场透射电子显微镜和扫描隧道显微镜,以及纳米级电化学测量技术,即扫描电化学池显微镜(SECCM),来揭示和剖析由层间扭曲控制的电极电子结构对界面电子转移动力学的深远影响。我们研究结果的核心是发现莫尔工程能够分离热力学上不利的堆叠构型或拓扑缺陷,这些缺陷显著提高了固液界面处的标准电子转移速率常数,超出了在传统的、未扭曲的二维(2D)材料上所测得的值。界面反应性的这种增强可归因于超晶格中这些特定位置内高密度电子态的局域化,这与在电极材料中引入物理缺陷或空位时发生的效应类似,但这里使用的是具有高度可调结构的原子级纯净表面。在我们的整个研究过程中,理解预先设定的莫尔扭曲角与观察到的电子转移动力学之间关系的细微差别在很大程度上依赖于对其他因素的探究,如自发的超晶格重构和电子态的三维局域化,这说明了将电化学测量与纳米级结构探针和理论建模相结合对于设计和优化莫尔工程电极的重要性。我们在这个领域的努力所提供的见解不断加深我们对电化学界面处电子转移基本机制的理解,也指出了扭曲电子学在推进电化学技术方面的革命性前景。虽然我们目前的电化学研究主要集中在基于石墨烯的莫尔材料上,但我们也展望了基于过渡金属二硫属化物(TMD)的莫尔材料作为高度通用的(光)电极表面候选材料的前景。因此,我们讨论了我们对TMD莫尔超晶格中观察到的结构弛豫的研究,并总结了我们将SECCM与TMD的场效应静电门控相结合的工作,以从半导体二维材料的整体电化学响应中解卷积材料电导率和本征电子转移动力学的影响。总体而言,这项工作为设计具有定制特性的广泛材料奠定了独特的基础,这些材料除了能为最初引发对莫尔扭曲电子学浓厚兴趣的新兴奇异关联电子物理学提供关键见解外,还能为界面电荷转移化学提供关键见解——有可能作为传感、能量转换和电催化的平台。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验