Li Chaojun, Ma Kai, Li Shengrong, Meng Xiangshui, Wang Ran, Zhang Daoqiang, Zhu Qi
College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.
School of Computer, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
Neuroimage. 2025 Feb 15;307:121013. doi: 10.1016/j.neuroimage.2025.121013. Epub 2025 Jan 14.
Dynamic brain networks (DBNs) can capture the intricate connections and temporal evolution among brain regions, becoming increasingly crucial in the diagnosis of neurological disorders. However, most existing researches tend to focus on isolated brain network sequence segmented by sliding windows, and they are difficult to effectively uncover the higher-order spatio-temporal topological pattern in DBNs. Meantime, it remains a challenge to utilize the structure connectivity prior in the DBNs analysis. To address these problems, we propose a multi-channel spatio-temporal graph attention contrastive network for DBNs analysis. Specifically, we first construct dynamic brain functional networks from fMRI data with sliding windows, and embed the structural connectivity derived from diffusion tensor imaging (DTI) to the dynamic functional connectivity graph representation to construct multi-modal brain network. Second, we develop a multi-channel spatial attention contrastive network to extract topological features from the brain network within each time window. This network incorporates an intra-window graph contrastive constraint to enhance the discriminative ability of the extracted features. Moreover, temporal dependencies across windows are captured by integrating feature embeddings through a self-attention mechanism, and the inter-window recurrent contrastive constraint is devised to extract higher-order spatio-temporal topological features. Finally, a multi-layer perceptron (MLP) is used to classify the brain networks. Experiments on epilepsy and ADNI datasets show that our method outperforms several state-of-the-art approaches in diagnosing performance, and it provides discriminative graph features for related brain diseases.
动态脑网络(DBNs)能够捕捉脑区之间复杂的连接和时间演变,在神经系统疾病的诊断中变得越来越重要。然而,大多数现有研究倾向于关注通过滑动窗口分割的孤立脑网络序列,难以有效揭示DBNs中的高阶时空拓扑模式。同时,在DBNs分析中利用结构连通性先验仍然是一个挑战。为了解决这些问题,我们提出了一种用于DBNs分析的多通道时空图注意力对比网络。具体来说,我们首先使用滑动窗口从功能磁共振成像(fMRI)数据构建动态脑功能网络,并将从扩散张量成像(DTI)获得的结构连通性嵌入到动态功能连通性图表示中,以构建多模态脑网络。其次,我们开发了一种多通道空间注意力对比网络,从每个时间窗口内的脑网络中提取拓扑特征。该网络纳入了窗口内图对比约束,以增强提取特征的判别能力。此外,通过自注意力机制整合特征嵌入来捕捉跨窗口的时间依赖性,并设计了窗口间循环对比约束来提取高阶时空拓扑特征。最后,使用多层感知器(MLP)对脑网络进行分类。在癫痫和ADNI数据集上的实验表明,我们的方法在诊断性能上优于几种现有方法,并为相关脑疾病提供了有判别力的图特征。