Yuan Ning, Guan Donghai, Li Shengrong, Zhang Li, Zhu Qi
IEEE Trans Neural Syst Rehabil Eng. 2025;33:1715-1728. doi: 10.1109/TNSRE.2025.3564983. Epub 2025 May 7.
Dynamic brain networks are more effective than static networks in characterizing the evolving patterns of brain functional connectivity, making them a more promising tool for diagnosing neurodegenerative diseases. However, existing classification methods for dynamic brain networks often rely on sliding windows to extract multi-window features, leading to suboptimal performance due to the spatio-temporal coupling on these windows and limited ability to effectively integrate complex topological features. To address these limitations, we propose a novel method called Confidence-Driven Dynamic Spatio-Temporal Convolutional Network (CD-DSTCN). First, our proposed method employs a spatio-temporal convolutional network integrated with a temporal attention mechanism to extract spatio-temporal features within each window. By propagating information across temporal windows during spatial convolution, the method effectively captures and integrates complex temporal and spatial dependencies. Second, each window generates an output probability, which quantifies prediction confidence based on the true class probability (TCP). This confidence score serves as a weight to assess the relative importance of different time windows. Finally, the confidence-weighted fused features are passed through a multilayer perceptron (MLP) for final classification. Extensive experiments on Alzheimer's and Parkinson's datasets show that the proposed method outperforms the state-of-the-art algorithms and can provide valuable biomarkers for brain disease diagnosis. Our code is publicly available at: https://github.com/YNingCode/CD-DSTCN.
动态脑网络在刻画脑功能连接的演变模式方面比静态网络更有效,使其成为诊断神经退行性疾病更有前景的工具。然而,现有的动态脑网络分类方法通常依赖滑动窗口来提取多窗口特征,由于这些窗口上的时空耦合以及有效整合复杂拓扑特征的能力有限,导致性能欠佳。为了解决这些局限性,我们提出了一种名为置信度驱动的动态时空卷积网络(CD-DSTCN)的新方法。首先,我们提出的方法采用了一个集成了时间注意力机制的时空卷积网络,以提取每个窗口内的时空特征。通过在空间卷积过程中跨时间窗口传播信息,该方法有效地捕捉并整合了复杂的时间和空间依赖性。其次,每个窗口生成一个输出概率,该概率基于真实类别概率(TCP)量化预测置信度。这个置信度分数用作权重,以评估不同时间窗口的相对重要性。最后,置信度加权融合特征通过多层感知器(MLP)进行最终分类。在阿尔茨海默病和帕金森病数据集上进行的大量实验表明,所提出的方法优于现有最先进的算法,并且可以为脑部疾病诊断提供有价值的生物标志物。我们的代码可在以下网址公开获取:https://github.com/YNingCode/CD-DSTCN。