School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, China.
Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
Neuroimage. 2024 Sep;298:120771. doi: 10.1016/j.neuroimage.2024.120771. Epub 2024 Aug 5.
Modeling dynamic interactions among network components is crucial to uncovering the evolution mechanisms of complex networks. Recently, spatio-temporal graph learning methods have achieved noteworthy results in characterizing the dynamic changes of inter-node relations (INRs). However, challenges remain: The spatial neighborhood of an INR is underexploited, and the spatio-temporal dependencies in INRs' dynamic changes are overlooked, ignoring the influence of historical states and local information. In addition, the model's explainability has been understudied. To address these issues, we propose an explainable spatio-temporal graph evolution learning (ESTGEL) model to model the dynamic evolution of INRs. Specifically, an edge attention module is proposed to utilize the spatial neighborhood of an INR at multi-level, i.e., a hierarchy of nested subgraphs derived from decomposing the initial node-relation graph. Subsequently, a dynamic relation learning module is proposed to capture the spatio-temporal dependencies of INRs. The INRs are then used as adjacent information to improve the node representation, resulting in comprehensive delineation of dynamic evolution of the network. Finally, the approach is validated with real data on brain development study. Experimental results on dynamic brain networks analysis reveal that brain functional networks transition from dispersed to more convergent and modular structures throughout development. Significant changes are observed in the dynamic functional connectivity (dFC) associated with functions including emotional control, decision-making, and language processing.
建模网络组件之间的动态交互对于揭示复杂网络的演化机制至关重要。最近,时空图学习方法在刻画节点间关系(INRs)的动态变化方面取得了显著的成果。然而,仍存在一些挑战:INRs 的空间邻域未得到充分利用,其动态变化中的时空依赖性被忽视,忽略了历史状态和局部信息的影响。此外,模型的可解释性也未得到充分研究。针对这些问题,我们提出了一种可解释的时空图演化学习(ESTGEL)模型来建模 INRs 的动态演化。具体来说,提出了一种边注意力模块,以多层次的方式利用 INR 的空间邻域,即从初始节点关系图分解而来的嵌套子图层次结构。随后,提出了一个动态关系学习模块来捕捉 INR 的时空依赖性。然后将 INR 用作相邻信息来改进节点表示,从而全面描绘网络的动态演化。最后,我们使用脑发育研究中的真实数据验证了该方法。对动态脑网络分析的实验结果表明,大脑功能网络在发育过程中从分散演变为更集中和模块化的结构。与情绪控制、决策和语言处理等功能相关的动态功能连接(dFC)发生了显著变化。