Suppr超能文献

使用m6A调控基因配对模型增强多发性骨髓瘤的分期

Enhancing staging in multiple myeloma using an m6A regulatory gene-pairing model.

作者信息

Deng Yating, Zhu Hongkai, Peng Hongling

机构信息

Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China.

Institute of Hematology, Central South University, Changsha, 410011, Hunan, People's Republic of China.

出版信息

Clin Exp Med. 2025 Jan 17;25(1):40. doi: 10.1007/s10238-024-01526-6.

Abstract

Multiple myeloma (MM) is characterized by clonal plasma cell proliferation in the bone marrow, challenging prognosis prediction. We developed a gene-pairing prognostic risk model using m6A regulatory genes and a nested LASSO method. A cutoff of - 0.133 categorized MM samples into high-risk and low-risk groups. The model showed strong prognostic performance in 2088 newly diagnosed MM samples and predicted response to combination therapy (daratumumab, carfilzomib, lenalidomide, and dexamethasone) in patients who failed or relapsed from bortezomib-containing regimens, with an AUC of 0.9. It distinguished between smoldering MM and MM (cutoff: - 0.45) and between MM and plasma cell leukemia (cutoff: 0.0857). Single-cell analysis revealed higher risk scores at relapse. Combining MM cell lines and sample data, we identified potential drugs and targets (ADAT2 and NUP153) effective against high-risk MM. Integrating the m6A risk model with the International Staging System (ISS) enhanced stratification accuracy. These insights support precision treatment of MM.

摘要

多发性骨髓瘤(MM)的特征是骨髓中克隆性浆细胞增殖,这对预后预测构成挑战。我们使用m6A调控基因和嵌套LASSO方法开发了一种基因配对预后风险模型。以-0.133为临界值可将MM样本分为高风险组和低风险组。该模型在2088例新诊断的MM样本中显示出强大的预后性能,并预测了对含硼替佐米方案治疗失败或复发的患者联合治疗(达雷妥尤单抗、卡非佐米、来那度胺和地塞米松)的反应,曲线下面积为0.9。它能够区分冒烟型MM和MM(临界值:-0.45)以及MM和浆细胞白血病(临界值:0.0857)。单细胞分析显示复发时风险评分更高。结合MM细胞系和样本数据,我们确定了对高风险MM有效的潜在药物和靶点(ADAT2和NUP153)。将m6A风险模型与国际分期系统(ISS)相结合可提高分层准确性。这些见解支持MM的精准治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c683/11742005/fa021dd8578d/10238_2024_1526_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验