文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种用于无机材料设计的生成模型。

A generative model for inorganic materials design.

作者信息

Zeni Claudio, Pinsler Robert, Zügner Daniel, Fowler Andrew, Horton Matthew, Fu Xiang, Wang Zilong, Shysheya Aliaksandra, Crabbé Jonathan, Ueda Shoko, Sordillo Roberto, Sun Lixin, Smith Jake, Nguyen Bichlien, Schulz Hannes, Lewis Sarah, Huang Chin-Wei, Lu Ziheng, Zhou Yichi, Yang Han, Hao Hongxia, Li Jielan, Yang Chunlei, Li Wenjie, Tomioka Ryota, Xie Tian

机构信息

Microsoft Research AI for Science, Cambridge, UK.

Microsoft Research AI for Science, Berlin, Germany.

出版信息

Nature. 2025 Mar;639(8055):624-632. doi: 10.1038/s41586-025-08628-5. Epub 2025 Jan 16.


DOI:10.1038/s41586-025-08628-5
PMID:39821164
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11922738/
Abstract

The design of functional materials with desired properties is essential in driving technological advances in areas such as energy storage, catalysis and carbon capture. Generative models accelerate materials design by directly generating new materials given desired property constraints, but current methods have a low success rate in proposing stable crystals or can satisfy only a limited set of property constraints. Here we present MatterGen, a model that generates stable, diverse inorganic materials across the periodic table and can further be fine-tuned to steer the generation towards a broad range of property constraints. Compared with previous generative models, structures produced by MatterGen are more than twice as likely to be new and stable, and more than ten times closer to the local energy minimum. After fine-tuning, MatterGen successfully generates stable, new materials with desired chemistry, symmetry and mechanical, electronic and magnetic properties. As a proof of concept, we synthesize one of the generated structures and measure its property value to be within 20% of our target. We believe that the quality of generated materials and the breadth of abilities of MatterGen represent an important advancement towards creating a foundational generative model for materials design.

摘要

设计具有所需特性的功能材料对于推动储能、催化和碳捕获等领域的技术进步至关重要。生成模型通过在给定所需特性约束的情况下直接生成新材料来加速材料设计,但目前的方法在提出稳定晶体方面成功率较低,或者只能满足有限的一组特性约束。在这里,我们展示了MatterGen,这是一个可以生成周期表中稳定、多样的无机材料的模型,并且可以进一步微调以引导生成满足广泛特性约束的材料。与之前的生成模型相比,MatterGen生成的结构成为新的稳定结构的可能性高出两倍多,并且距离局部能量最小值近十倍以上。经过微调后,MatterGen成功生成了具有所需化学、对称性以及机械、电子和磁性特性的稳定新材料。作为概念验证,我们合成了一种生成的结构,并测量其特性值在目标值的20%以内。我们相信,生成材料的质量以及MatterGen的能力广度代表了朝着创建材料设计基础生成模型迈出的重要一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d7e/11922738/4ab02caa165f/41586_2025_8628_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d7e/11922738/a6e706510cb1/41586_2025_8628_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d7e/11922738/7f53eb5b9b67/41586_2025_8628_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d7e/11922738/647219fa05fd/41586_2025_8628_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d7e/11922738/700d8c650d0e/41586_2025_8628_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d7e/11922738/8b82a3d10e7b/41586_2025_8628_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d7e/11922738/4ab02caa165f/41586_2025_8628_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d7e/11922738/a6e706510cb1/41586_2025_8628_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d7e/11922738/7f53eb5b9b67/41586_2025_8628_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d7e/11922738/647219fa05fd/41586_2025_8628_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d7e/11922738/700d8c650d0e/41586_2025_8628_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d7e/11922738/8b82a3d10e7b/41586_2025_8628_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d7e/11922738/4ab02caa165f/41586_2025_8628_Fig6_HTML.jpg

相似文献

[1]
A generative model for inorganic materials design.

Nature. 2025-3

[2]
Design of New Inorganic Crystals with the Desired Composition Using Deep Learning.

J Chem Inf Model. 2023-9-25

[3]
Generative Pretrained Transformer for Heterogeneous Catalysts.

J Am Chem Soc. 2024-12-11

[4]
LOGICS: Learning optimal generative distribution for designing de novo chemical structures.

J Cheminform. 2023-9-7

[5]
3-D Inorganic Crystal Structure Generation and Property Prediction via Representation Learning.

J Chem Inf Model. 2020-10-26

[6]
Actively Searching: Inverse Design of Novel Molecules with Simultaneously Optimized Properties.

J Phys Chem A. 2022-1-20

[7]
Conditional Molecular Design with Deep Generative Models.

J Chem Inf Model. 2018-7-27

[8]
High-Throughput Discovery of Novel Cubic Crystal Materials Using Deep Generative Neural Networks.

Adv Sci (Weinh). 2021-10

[9]
Inverse design of porous materials using artificial neural networks.

Sci Adv. 2020-1-3

[10]
High-throughput property-driven generative design of functional organic molecules.

Nat Comput Sci. 2023-2

引用本文的文献

[1]
FlowMol3: Flow Matching for 3D De Novo Small-Molecule Generation.

ArXiv. 2025-8-18

[2]
Generating New Coordination Compounds via Multireference Simulations, Genetic Algorithms, and Machine Learning: The Case of Co(II) and Dy(III) Molecular Magnets.

JACS Au. 2025-7-29

[3]
Engineering copper and copper-based materials for a post-antibiotic era.

Front Bioeng Biotechnol. 2025-8-6

[4]
Data-driven de novo design of super-adhesive hydrogels.

Nature. 2025-8

[5]
Descriptors construction and application in catalytic site design.

iScience. 2025-7-9

[6]
Geographic-style maps with a local novelty distance help navigate in the materials space.

Sci Rep. 2025-7-29

[7]
Self-Driving Laboratories: Translating Materials Science from Laboratory to Factory.

ACS Omega. 2025-6-3

[8]
Accurate prediction of synthesizability and precursors of 3D crystal structures via large language models.

Nat Commun. 2025-7-15

[9]
Zero shot molecular generation via similarity kernels.

Nat Commun. 2025-7-1

[10]
AI-Driven Defect Engineering for Advanced Thermoelectric Materials.

Adv Mater. 2025-9

本文引用的文献

[1]
A universal graph deep learning interatomic potential for the periodic table.

Nat Comput Sci. 2022-11

[2]
Scaling deep learning for materials discovery.

Nature. 2023-12

[3]
Data-Driven Score-Based Models for Generating Stable Structures with Adaptive Crystal Cells.

J Chem Inf Model. 2023-11-27

[4]
Search for ambient superconductivity in the Lu-N-H system.

Nat Commun. 2023-9-4

[5]
De novo design of protein structure and function with RFdiffusion.

Nature. 2023-8

[6]
Upper-Bound Energy Minimization to Search for Stable Functional Materials with Graph Neural Networks.

JACS Au. 2022-12-31

[7]
A dataset of 175k stable and metastable materials calculated with the PBEsol and SCAN functionals.

Sci Data. 2022-3-2

[8]
Machine Learning Force Fields.

Chem Rev. 2021-8-25

[9]
Materials Cloud, a platform for open computational science.

Sci Data. 2020-9-8

[10]
Generative Adversarial Networks for Crystal Structure Prediction.

ACS Cent Sci. 2020-8-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索