Zeni Claudio, Pinsler Robert, Zügner Daniel, Fowler Andrew, Horton Matthew, Fu Xiang, Wang Zilong, Shysheya Aliaksandra, Crabbé Jonathan, Ueda Shoko, Sordillo Roberto, Sun Lixin, Smith Jake, Nguyen Bichlien, Schulz Hannes, Lewis Sarah, Huang Chin-Wei, Lu Ziheng, Zhou Yichi, Yang Han, Hao Hongxia, Li Jielan, Yang Chunlei, Li Wenjie, Tomioka Ryota, Xie Tian
Microsoft Research AI for Science, Cambridge, UK.
Microsoft Research AI for Science, Berlin, Germany.
Nature. 2025 Mar;639(8055):624-632. doi: 10.1038/s41586-025-08628-5. Epub 2025 Jan 16.
The design of functional materials with desired properties is essential in driving technological advances in areas such as energy storage, catalysis and carbon capture. Generative models accelerate materials design by directly generating new materials given desired property constraints, but current methods have a low success rate in proposing stable crystals or can satisfy only a limited set of property constraints. Here we present MatterGen, a model that generates stable, diverse inorganic materials across the periodic table and can further be fine-tuned to steer the generation towards a broad range of property constraints. Compared with previous generative models, structures produced by MatterGen are more than twice as likely to be new and stable, and more than ten times closer to the local energy minimum. After fine-tuning, MatterGen successfully generates stable, new materials with desired chemistry, symmetry and mechanical, electronic and magnetic properties. As a proof of concept, we synthesize one of the generated structures and measure its property value to be within 20% of our target. We believe that the quality of generated materials and the breadth of abilities of MatterGen represent an important advancement towards creating a foundational generative model for materials design.
设计具有所需特性的功能材料对于推动储能、催化和碳捕获等领域的技术进步至关重要。生成模型通过在给定所需特性约束的情况下直接生成新材料来加速材料设计,但目前的方法在提出稳定晶体方面成功率较低,或者只能满足有限的一组特性约束。在这里,我们展示了MatterGen,这是一个可以生成周期表中稳定、多样的无机材料的模型,并且可以进一步微调以引导生成满足广泛特性约束的材料。与之前的生成模型相比,MatterGen生成的结构成为新的稳定结构的可能性高出两倍多,并且距离局部能量最小值近十倍以上。经过微调后,MatterGen成功生成了具有所需化学、对称性以及机械、电子和磁性特性的稳定新材料。作为概念验证,我们合成了一种生成的结构,并测量其特性值在目标值的20%以内。我们相信,生成材料的质量以及MatterGen的能力广度代表了朝着创建材料设计基础生成模型迈出的重要一步。
Nature. 2025-3
J Chem Inf Model. 2023-9-25
J Am Chem Soc. 2024-12-11
J Chem Inf Model. 2020-10-26
J Phys Chem A. 2022-1-20
J Chem Inf Model. 2018-7-27
Sci Adv. 2020-1-3
Nat Comput Sci. 2023-2
Front Bioeng Biotechnol. 2025-8-6
Nature. 2025-8
iScience. 2025-7-9
Nat Commun. 2025-7-1
Adv Mater. 2025-9
Nat Comput Sci. 2022-11
Nature. 2023-12
J Chem Inf Model. 2023-11-27
Nat Commun. 2023-9-4
Chem Rev. 2021-8-25
Sci Data. 2020-9-8
ACS Cent Sci. 2020-8-26