Suppr超能文献

FlowMol3:用于三维从头小分子生成的流匹配

FlowMol3: Flow Matching for 3D De Novo Small-Molecule Generation.

作者信息

Dunn Ian, Koes David R

出版信息

ArXiv. 2025 Aug 18:arXiv:2508.12629v1.

Abstract

A generative model capable of sampling realistic molecules with desired properties could accelerate chemical discovery across a wide range of applications. Toward this goal, significant effort has focused on developing models that jointly sample molecular topology and 3D structure. We present FlowMol3, an open-source, multi-modal flow matching model that advances the state of the art for all-atom, small-molecule generation. Its substantial performance gains over previous FlowMol versions are achieved without changes to the graph neural network architecture or the underlying flow matching formulation. Instead, FlowMol3's improvements arise from three architecture-agnostic techniques that incur negligible computational cost: self-conditioning, fake atoms, and train-time geometry distortion. FlowMol3 achieves nearly 100% molecular validity for drug-like molecules with explicit hydrogens, more accurately reproduces the functional group composition and geometry of its training data, and does so with an order of magnitude fewer learnable parameters than comparable methods. We hypothesize that these techniques mitigate a general pathology affecting transport-based generative models, enabling detection and correction of distribution drift during inference. Our results highlight simple, transferable strategies for improving the stability and quality of diffusion- and flow-based molecular generative models.

摘要

一个能够对具有所需特性的逼真分子进行采样的生成模型,可以加速广泛应用中的化学发现。为了实现这一目标,大量工作集中在开发能够联合采样分子拓扑结构和3D结构的模型上。我们提出了FlowMol3,这是一个开源的多模态流匹配模型,它提升了全原子小分子生成的技术水平。它相对于之前的FlowMol版本有显著的性能提升,且无需改变图神经网络架构或底层的流匹配公式。相反,FlowMol3的改进来自于三种与架构无关的技术,这些技术产生的计算成本可忽略不计:自条件、虚拟原子和训练时的几何变形。对于具有显式氢的类药物分子,FlowMol3实现了近100%的分子有效性,更准确地再现了其训练数据的官能团组成和几何结构,并且与可比方法相比,其可学习参数减少了一个数量级。我们假设这些技术减轻了影响基于传输的生成模型的一般问题,从而能够在推理过程中检测和纠正分布漂移。我们的结果突出了用于提高基于扩散和流的分子生成模型的稳定性和质量的简单、可转移策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05d4/12393239/3cdd0a16da84/nihpp-2508.12629v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验