Bruce Tom, Amir Zachary, Allen Benjamin L, Alting Brendan F, Amos Matt, Augusteyn John, Ballard Guy-Anthony, Behrendorff Linda M, Bell Kristian, Bengsen Andrew J, Bennett Ami, Benshemesh Joe S, Bentley Joss, Blackmore Caroline J, Boscarino-Gaetano Remo, Bourke Lachlan A, Brewster Rob, Brook Barry W, Broughton Colin, Buettel Jessie C, Carter Andrew, Chiu-Werner Antje, Claridge Andrew W, Comer Sarah, Comte Sebastien, Connolly Rod M, Cowan Mitchell A, Cross Sophie L, Cunningham Calum X, Dalziell Anastasia H, Davies Hugh F, Davis Jenny, Dawson Stuart J, Di Stefano Julian, Dickman Christopher R, Dillon Martin L, Doherty Tim S, Driessen Michael M, Driscoll Don A, Dundas Shannon J, Eichholtzer Anne C, Elliott Todd F, Elsworth Peter, Fancourt Bronwyn A, Fardell Loren L, Faris James, Fawcett Adam, Fisher Diana O, Fleming Peter J S, Forsyth David M, Garza-Garcia Alejandro D, Geary William L, Gillespie Graeme, Giumelli Patrick J, Gracanin Ana, Grantham Hedley S, Greenville Aaron C, Griffiths Stephen R, Groffen Heidi, Hamilton David G, Harriott Lana, Hayward Matthew W, Heard Geoffrey, Heiniger Jaime, Helgen Kristofer M, Henderson Tim J, Hernandez-Santin Lorna, Herrera Cesar, Hirsch Ben T, Hohnen Rosemary, Hollings Tracey A, Hoskin Conrad J, Hradsky Bronwyn A, Humphrey Jacinta E, Jennings Paul R, Jones Menna E, Jordan Neil R, Kelly Catherine L, Kennedy Malcolm S, Knipler Monica L, Kreplins Tracey L, L'Herpiniere Kiara L, Laurance William F, Lavery Tyrone H, Le Pla Mark, Leahy Lily, Leedman Ashley, Legge Sarah, Leitão Ana V, Letnic Mike, Liddell Michael J, Lieb Zoë E, Linley Grant D, Lisle Allan T, Lohr Cheryl A, Maitz Natalya, Marshall Kieran D, Mason Rachel T, Matheus-Holland Daniela F, McComb Leo B, McDonald Peter J, McGregor Hugh, McKnight Donald T, Meek Paul D, Menon Vishnu, Michael Damian R, Mills Charlotte H, Miritis Vivianna, Moore Harry A, Morgan Helen R, Murphy Brett P, Murray Andrew J, Natusch Daniel J D, Neilly Heather, Nevill Paul, Newman Peggy, Newsome Thomas M, Nimmo Dale G, Nordberg Eric J, O'Dwyer Terence W, O'Neill Sally, Old Julie M, Oxenham Katherine, Pauza Matthew D, Pestell Ange J L, Pitcher Benjamin J, Pocknee Christopher A, Possingham Hugh P, Raiter Keren G, Rand Jacquie S, Rees Matthew W, Rendall Anthony R, Renwick Juanita, Reside April, Rew-Duffy Miranda, Ritchie Euan G, Roach Chris P, Robley Alan, Rog Stefanie M, Rout Tracy M, Schlacher Thomas A, Scomparin Cyril R, Sitters Holly, Smith Deane A, Somaweera Ruchira, Spencer Emma E, Spindler Rebecca E, Stobo-Wilson Alyson M, Stokeld Danielle, Streeting Louise M, Sutherland Duncan R, Taggart Patrick L, Teixeira Daniella, Thompson Graham G, Thompson Scott A, Thorpe Mary O, Todd Stephanie J, Towerton Alison L, Vernes Karl, Waller Grace, Wardle Glenda M, Watchorn Darcy J, Watson Alexander W T, Welbergen Justin A, Weston Michael A, Wijas Baptiste J, Williams Stephen E, Woodford Luke P, Wooster Eamonn I F, Znidersic Elizabeth, Luskin Matthew S
Wildlife Observatory of Australia (WildObs), Queensland Cyber Infrastructure Foundation (QCIF), Brisbane, Queensland, 4072, Australia.
School of the Environment, University of Queensland, Brisbane, Queensland, 4072, Australia.
Biol Rev Camb Philos Soc. 2025 Apr;100(2):530-555. doi: 10.1111/brv.13152. Epub 2025 Jan 17.
Camera traps are widely used in wildlife research and monitoring, so it is imperative to understand their strengths, limitations, and potential for increasing impact. We investigated a decade of use of wildlife cameras (2012-2022) with a case study on Australian terrestrial vertebrates using a multifaceted approach. We (i) synthesised information from a literature review; (ii) conducted an online questionnaire of 132 professionals; (iii) hosted an in-person workshop of 28 leading experts representing academia, non-governmental organisations (NGOs), and government; and (iv) mapped camera trap usage based on all sources. We predicted that the last decade would have shown: (i) exponentially increasing sampling effort, a continuation of camera usage trends up to 2012; (ii) analytics to have shifted from naive presence/absence and capture rates towards hierarchical modelling that accounts for imperfect detection, thereby improving the quality of outputs and inferences on occupancy, abundance, and density; and (iii) broader research scales in terms of multi-species, multi-site and multi-year studies. However, the results showed that the sampling effort has reached a plateau, with publication rates increasing only modestly. Users reported reaching a saturation point in terms of images that could be processed by humans and time for complex analyses and academic writing. There were strong taxonomic and geographic biases towards medium-large mammals (>500 g) in forests along Australia's southeastern coastlines, reflecting proximity to major cities. Regarding analytical choices, bias-prone indices still accounted for ~50% of outputs and this was consistent across user groups. Multi-species, multi-site and multiple-year studies were rare, largely driven by hesitancy around collaboration and data sharing. There is no widely used repository for wildlife camera images and the Atlas of Living Australia (ALA) is the dominant repository for sharing tabular occurrence records. However, the ALA is presence-only and thus is unsuitable for creating detection histories with absences, inhibiting hierarchical modelling. Workshop discussions identified a pressing need for collaboration to enhance the efficiency, quality and scale of research and management outcomes, leading to the proposal of a Wildlife Observatory of Australia (WildObs). To encourage data standards and sharing, WildObs should (i) promote a metadata collection app; (ii) create a tagged image repository to facilitate artificial intelligence/machine learning (AI/ML) computer vision research in this space; (iii) address the image identification bottleneck via the use of AI/ML-powered image-processing platforms; (iv) create data commons for detection histories that are suitable for hierarchical modelling; and (v) provide capacity building and tools for hierarchical modelling. Our review highlights that while Australia's investments in monitoring biodiversity with cameras position it to be a global leader in this context, realising that potential requires a paradigm shift towards best practices for collecting, curating, sharing and analysing 'Big Data'. Our findings and framework have broad applicability outside Australia to enhance camera usage to meet conservation and management objectives ranging from local to global scales. This review articulates a country/continental observatory approach that is also suitable for international collaborative wildlife research networks.
相机陷阱在野生动物研究和监测中被广泛使用,因此了解其优势、局限性以及增强影响力的潜力至关重要。我们采用多方面的方法,以澳大利亚陆地脊椎动物为例,对野生动物相机十年(2012 - 2022年)的使用情况进行了调查。我们:(i)综合了文献综述中的信息;(ii)对132名专业人员进行了在线问卷调查;(iii)举办了一次有28位来自学术界、非政府组织(NGO)和政府的顶尖专家参加的面对面研讨会;(iv)根据所有来源绘制相机陷阱使用情况图。我们预测过去十年会呈现出:(i)采样工作量呈指数增长,延续2012年之前的相机使用趋势;(ii)分析方法已从简单的存在/不存在和捕获率转向考虑不完全检测的分层建模,从而提高了输出质量以及对占有率、丰度和密度的推断;(iii)在多物种、多地点和多年研究方面有更广泛的研究规模。然而,结果表明采样工作量已达到平稳状态,发表率仅适度增加。用户报告称,在可由人类处理的图像数量以及进行复杂分析和学术写作的时间方面已达到饱和点。在澳大利亚东南海岸线的森林中,对中型至大型哺乳动物(>500克)存在强烈的分类学和地理偏向,这反映了与主要城市的距离。关于分析方法的选择,容易产生偏差的指数仍占约50%的输出结果,并且在不同用户群体中情况一致。多物种、多地点和多年研究很少见,这主要是由于在合作和数据共享方面存在顾虑。目前没有广泛使用的野生动物相机图像存储库,澳大利亚生物多样性图谱(ALA)是共享表格形式出现记录的主要存储库。然而,ALA仅记录存在情况,因此不适合创建包含缺失情况的检测历史记录,从而阻碍了分层建模。研讨会讨论确定迫切需要开展合作,以提高研究和管理成果的效率、质量和规模,进而提出了澳大利亚野生动物观测站(WildObs)的提议。为鼓励数据标准制定和共享,WildObs应:(i)推广一个元数据收集应用程序;(ii)创建一个带标签的图像存储库,以促进该领域的人工智能/机器学习(AI/ML)计算机视觉研究;(iii)通过使用由AI/ML驱动的图像处理平台解决图像识别瓶颈;(iv)为适合分层建模的检测历史记录创建数据共享空间;(v)提供分层建模的能力建设和工具。我们的综述强调,虽然澳大利亚在利用相机监测生物多样性方面的投入使其在这方面有成为全球领导者的潜力,但要实现这一潜力需要向收集、管理、共享和分析“大数据”的最佳实践转变范式。我们的研究结果和框架在澳大利亚境外具有广泛的适用性,可用于提高相机的使用,以实现从地方到全球范围的保护和管理目标。本综述阐述了一种国家/大陆观测站方法,该方法也适用于国际合作的野生动物研究网络。