Liu Jiaqi, Jiang Chengpeng, Yu Qianbo, Ni Yao, Yu Cunjiang, Xu Wentao
Institute of Optoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China.
Shenzhen Research Institute of Nankai University, Shenzhen, China.
Nat Commun. 2025 Jan 17;16(1):756. doi: 10.1038/s41467-024-55670-4.
Biological neural systems seamlessly integrate perception and action, a feat not efficiently replicated in current physically separated designs of neural-imitating electronics. This segregation hinders coordination and functionality within the neuromorphic system. Here, we present a flexible device tailored for neuromorphic computation and muscle actuation. Each individual device component emulates essential synaptic functions for neural computing, while the collective ensemble replicates muscle actuation in response to efferent neuromuscular commands. These properties stem from densely-packed, hydrophilic nanometer-sized channels, and the erection of a high-entropy, intricately silver nanowires to capture and store of hydrated cations. Leveraging the remarkable deformation effect, we demonstrate hazard detection-avoidance robot, and multidimensional integration for arbitrary programmed shapes like 360° panoramic information capture and soft-bodied biological deformations wherein localized responses to stimuli are harmoniously integrated to achieve arbitrary coordinated motion. These results provide a significant avenue for the development of future flexible electronics and bio-inspired systems.
生物神经系统无缝集成感知与行动,这一壮举在当前物理上分离的神经模拟电子设计中无法有效复制。这种分离阻碍了神经形态系统内的协调与功能。在此,我们展示了一种专为神经形态计算和肌肉驱动量身定制的柔性器件。每个单独的器件组件模拟神经计算所需的基本突触功能,而整体集合则响应传出神经肌肉指令复制肌肉驱动。这些特性源于密集排列的亲水性纳米级通道,以及通过构建高熵、错综复杂的银纳米线来捕获和存储水合阳离子。利用显著的变形效应,我们展示了危险检测 - 规避机器人以及针对任意编程形状的多维集成,如360°全景信息捕获和软体生物变形,其中对刺激的局部响应被和谐整合以实现任意协调运动。这些结果为未来柔性电子学和生物启发系统的发展提供了一条重要途径。