Casaletto James A, Scott Ryan T, Myrick Makenna, Mackintosh Graham, Chok Hamed, Saravia-Butler Amanda, Hoarfrost Adrienne, Galazka Jonathan M, Sanders Lauren M, Costes Sylvain V
Blue Marble Space Institute of Science, NASA Ames, Mountain View, USA.
KBR, NASA Ames, Mountain View, USA.
Sci Rep. 2025 Jan 18;15(1):2363. doi: 10.1038/s41598-024-81394-y.
Spaceflight has several detrimental effects on human and rodent health. For example, liver dysfunction is a common phenotype observed in space-flown rodents, and this dysfunction is partially reflected in transcriptomic changes. Studies linking transcriptomics with liver dysfunction rely on tools which exploit correlation, but these tools make no attempt to disambiguate true correlations from spurious ones. In this work, we use a machine learning ensemble of causal inference methods called the Causal Research and Inference Search Platform (CRISP) which was developed to predict causal features of a binary response variable from high-dimensional input. We used CRISP to identify genes robustly correlated with a lipid density phenotype using transcriptomic and histological data from the NASA Open Science Data Repository (OSDR). Our approach identified genes and molecular targets not predicted by previous traditional differential gene expression analyses. These genes are likely to play a pivotal role in the liver dysfunction observed in space-flown rodents, and this work opens the door to identifying novel countermeasures for space travel.
太空飞行对人类和啮齿动物的健康有若干有害影响。例如,肝功能障碍是在太空飞行的啮齿动物中观察到的常见表型,这种功能障碍部分反映在转录组变化中。将转录组学与肝功能障碍联系起来的研究依赖于利用相关性的工具,但这些工具并未尝试区分真实相关性和虚假相关性。在这项工作中,我们使用了一种名为因果研究与推理搜索平台(CRISP)的因果推理方法的机器学习集成,该平台旨在从高维输入预测二元响应变量的因果特征。我们使用CRISP,利用来自美国国家航空航天局开放科学数据存储库(OSDR)的转录组学和组织学数据,识别与脂质密度表型密切相关的基因。我们的方法识别出了先前传统差异基因表达分析未预测到的基因和分子靶点。这些基因可能在太空飞行的啮齿动物中观察到的肝功能障碍中起关键作用,这项工作为识别太空旅行的新型对策打开了大门。