Houssein Essam H, Mohamed Meran, Younis Eman M G, Mohamed Waleed M
Faculty of Computers and Information, Minia University, Minia, Egypt.
Sci Rep. 2025 Jan 17;15(1):2275. doi: 10.1038/s41598-025-86275-6.
This paper proposes a hybridized model for air quality forecasting that combines the Support Vector Regression (SVR) method with Harris Hawks Optimization (HHO) called (HHO-SVR). The proposed HHO-SVR model utilizes five datasets from the environmental protection agency's Downscaler Model (DS) to predict Particulate Matter ([Formula: see text]) levels. In order to assess the efficacy of the suggested HHO-SVR forecasting model, we employ metrics such as Mean Absolute Percentage Error (MAPE), Average, Standard Deviation (SD), Best Fit, Worst Fit, and CPU time. Additionally, we contrast our methodology with recently created models that have been published in the literature, such as the Grey Wolf Optimizer (GWO), Salp Swarm Algorithm (SSA), Henry Gas Solubility Optimization (HGSO), Barnacles Mating Optimizer (BMO), Whale Optimization Algorithm (WOA), and Manta Ray Foraging Optimization (MRFO). In particular, the proposed HHO-SVR model outperforms other approaches, establishing it as the optimal model based on its superior results.
本文提出了一种用于空气质量预测的混合模型,该模型将支持向量回归(SVR)方法与哈里斯鹰优化算法(HHO)相结合,称为(HHO - SVR)。所提出的HHO - SVR模型利用来自环境保护局降尺度模型(DS)的五个数据集来预测颗粒物([公式:见正文])水平。为了评估所建议的HHO - SVR预测模型的有效性,我们采用平均绝对百分比误差(MAPE)、平均值、标准差(SD)、最佳拟合、最差拟合和CPU时间等指标。此外,我们将我们的方法与文献中最近发表的已创建模型进行对比,如灰狼优化算法(GWO)、沙丁鱼群算法(SSA)、亨利气体溶解度优化算法(HGSO)、藤壶交配优化算法(BMO)、鲸鱼优化算法(WOA)和蝠鲼觅食优化算法(MRFO)。特别是,所提出的HHO - SVR模型优于其他方法,基于其卓越的结果将其确立为最优模型。