Ali Dima Samer, Glia Ayoub, Sukumar Pavithra, Deliorman Muhammedin, Qasaimeh Mohammad A
Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
Department of Mechanical and Aerospace Engineering, New York University, New York, USA.
Sci Rep. 2025 Jan 17;15(1):2252. doi: 10.1038/s41598-025-85797-3.
This study advances microfluidic probe (MFP) technology through the development of a 3D-printed Microfluidic Mixing Probe (MMP), which integrates a built-in pre-mixer network of channels and features a lined array of paired injection and aspiration apertures. By combining the concepts of hydrodynamic flow confinements (HFCs) and "Christmas-tree" concentration gradient generation, the MMP can produce multiple concentration-varying flow dipoles, ranging from 0 to 100%, within an open microfluidic environment. This innovation overcomes previous limitations of MFPs, which only produced homogeneous bioreagents, by utilizing the pre-mixer to create distinct concentration of injected biochemicals. Experimental results with fluorescent dyes and the chemotherapeutic agent Cisplatin on MCF-7 cells confirmed the MMP's ability to generate precise, discrete concentration gradients with the formed flow dipoles, consistent with numerical models. The MMP's ability to localize drug exposure across cell cultures without cross-contamination opens new avenues for drug testing, personalized medicine, and molecular biology. It enables precise control over gradient delivery, dosage, and timing, which are key factors in enhancing drug evaluation processes.
本研究通过开发一种3D打印的微流体混合探针(MMP)推动了微流体探针(MFP)技术的发展,该探针集成了内置的通道预混合器网络,并具有成对的注射和抽吸孔的线性阵列。通过结合流体动力流限制(HFC)和“圣诞树”浓度梯度生成的概念,MMP可以在开放的微流体环境中产生多种浓度变化的流动偶极子,范围从0到100%。这项创新克服了MFP以前的局限性,即MFP只能产生均匀的生物试剂,通过利用预混合器来产生不同浓度的注入生化物质。使用荧光染料和化疗药物顺铂对MCF-7细胞进行的实验结果证实,MMP能够通过形成的流动偶极子产生精确、离散的浓度梯度,这与数值模型一致。MMP在不发生交叉污染的情况下对整个细胞培养物进行药物暴露定位的能力为药物测试、个性化医疗和分子生物学开辟了新途径。它能够精确控制梯度递送、剂量和时间,这些都是加强药物评估过程的关键因素。