Suppr超能文献

利用3D脑磁共振成像通过深度学习进行弗兰克征识别的进展

Advancements in Frank's sign Identification using deep learning on 3D brain MRI.

作者信息

Jo Sungman, Kim Jun Sung, Kwon Min Jeong, Park Jieun, Kim Jeong Lan, Jhoo Jin Hyeong, Kim Eosu, Sunwoo Leonard, Kim Jae Hyoung, Han Ji Won, Kim Ki Woong

机构信息

Department of Health Science and Technology, Graduate school of convergence science and technology, Seoul National University, Seoul, South Korea.

Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea.

出版信息

Sci Rep. 2025 Jan 18;15(1):2383. doi: 10.1038/s41598-024-82756-2.

Abstract

Frank's sign (FS) is a diagnostic marker associated with aging and various health conditions. Despite its clinical significance, there lacks a standardized method for its identification. This study aimed to develop a deep learning model for automated FS detection in 3D facial images derived from MRI scans. Four deep learning architectures were evaluated for FS segmentation on a dataset of 400 brain MRI scans. The optimal model was subsequently validated on two external datasets, comprising 300 brain MRI scans each with varying FS presence. Dice similarity coefficient (DSC) and receiver operating characteristic (ROC) analysis were employed to assess model performance. The U-net architecture demonstrated superior performance in terms of accuracy and efficiency. On the validation datasets, the model achieved a DSC of 0.734, an intra-class correlation coefficient of 0.865, and an area under the ROC curve greater than 0.9 for FS detection. Additionally, the model identified optimal voxel thresholds for accurate FS classification, resulting in high sensitivity, specificity, and accuracy metrics. This study successfully developed a deep learning model for automated FS segmentation in MRI scans. This tool has the potential to enhance FS identification in clinical practice and contribute to further research on FS and its associated health implications.

摘要

弗兰克征(FS)是一种与衰老及多种健康状况相关的诊断标志物。尽管其具有临床意义,但目前仍缺乏一种标准化的识别方法。本研究旨在开发一种深度学习模型,用于自动检测源自磁共振成像(MRI)扫描的三维面部图像中的FS。在一个包含400例脑部MRI扫描的数据集上,对四种深度学习架构进行了FS分割评估。随后,在两个外部数据集上对最优模型进行了验证,每个外部数据集包含300例脑部MRI扫描,且FS的存在情况各不相同。采用骰子相似系数(DSC)和受试者工作特征(ROC)分析来评估模型性能。U-net架构在准确性和效率方面表现出卓越性能。在验证数据集上,该模型在FS检测方面实现了0.734的DSC、0.865的组内相关系数以及大于0.9的ROC曲线下面积。此外,该模型确定了用于准确FS分类的最佳体素阈值,从而得到了较高的灵敏度、特异性和准确率指标。本研究成功开发了一种用于MRI扫描中自动FS分割的深度学习模型。该工具具有在临床实践中增强FS识别的潜力,并有助于对FS及其相关健康影响的进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0945/11743131/9c61a470bf2b/41598_2024_82756_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验