Andrew Ndepana, Trofe Anthony, Laws Eric, Pathiraja Gayani, Kalkar Swapna, Ignatova Tetyana, Rathnayake Hemali
Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, 27401, USA.
Small. 2025 Jun;21(22):e2411472. doi: 10.1002/smll.202411472. Epub 2025 Jan 19.
The chemistry of the extracellular electron transfer (EET) process in microorganisms can be understood by interfacing them with abiotic materials that act as external redox mediators. These mediators capture and transfer extracellular electrons through redox reactions, bridging the microorganism and the electrode surface. Understanding this charge transfer process is essential for designing biocapacitors capable of modulating and storing charge signatures as capacitance at the electrode interface. Herein, a novel biointerfacial strategy is presented to investigate directional charge injection from a non-exoelectrogenic living microbe to an electrode surface using the porous metal-organic framework (MOF), MIL-88B. The biohybrid, formed by interfacing Escherichia coli (E. coli) with MIL-88B, demonstrates symbiotic interactions between the biotic and abiotic components, facilitating EET from E. coli to the electrode via the MOF. Acting as a redox mediator, the MOF catalyzes E. coli's exoelectrogenic activity, generating distinct charge capacitive signatures at the E. coli-MOF interface. This system integrates the capacitive signatures resulting from the EET process with the MOF's intrinsic pseudocapacitive properties and surface-controlled capacitive effects, functioning as a highly efficient biocapacitor. Furthermore, this approach of converting the biochemical energy of a non-exoelectrogenic microorganism into capacitive signatures opens a new pathway for translating biological signals into functional outputs, paving the way for autonomous biosensing platforms.
通过将微生物与作为外部氧化还原介质的非生物材料相连接,可以理解微生物细胞外电子转移(EET)过程的化学原理。这些介质通过氧化还原反应捕获和转移细胞外电子,在微生物和电极表面之间架起桥梁。了解这种电荷转移过程对于设计能够在电极界面将电荷特征作为电容进行调制和存储的生物电容器至关重要。在此,提出了一种新颖的生物界面策略,以研究使用多孔金属有机框架(MOF)MIL-88B将非产电活微生物的定向电荷注入电极表面的过程。由大肠杆菌(E. coli)与MIL-88B连接形成的生物杂交体展示了生物和非生物成分之间的共生相互作用,促进了电子从大肠杆菌通过MOF转移到电极。作为氧化还原介质,MOF催化大肠杆菌的产电活性,在大肠杆菌-MOF界面产生独特的电荷电容特征。该系统将EET过程产生的电容特征与MOF的固有赝电容特性和表面控制的电容效应相结合,起到高效生物电容器的作用。此外,这种将非产电微生物的生化能量转化为电容特征的方法为将生物信号转化为功能输出开辟了一条新途径,为自主生物传感平台铺平了道路。