McCuskey Samantha R, Chatsirisupachai Jirat, Zeglio Erica, Parlak Onur, Panoy Patchareepond, Herland Anna, Bazan Guillermo C, Nguyen Thuc-Quyen
Department of Chemistry, National University of Singapore, Singapore 119077, Singapore.
Center for Polymers and Organic Solids & Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States.
Chem Rev. 2022 Feb 23;122(4):4791-4825. doi: 10.1021/acs.chemrev.1c00487. Epub 2021 Oct 29.
Microbial bioelectronics require interfacing microorganisms with electrodes. The resulting abiotic/biotic platforms provide the basis of a range of technologies, including energy conversion and diagnostic assays. Organic semiconductors (OSCs) provide a unique strategy to modulate the interfaces between microbial systems and external electrodes, thereby improving the performance of these incipient technologies. In this review, we explore recent progress in the field on how OSCs, and related materials capable of charge transport, are being used within the context of microbial systems, and more specifically bacteria. We begin by examining the electrochemical communication modes in bacteria and the biological basis for charge transport. Different types of synthetic organic materials that have been designed and synthesized for interfacing and interrogating bacteria are discussed next, followed by the most commonly used characterization techniques for evaluating transport in microbial, synthetic, and hybrid systems. A range of applications is subsequently examined, including biological sensors and energy conversion systems. The review concludes by summarizing what has been accomplished so far and suggests future design approaches for OSC bioelectronics materials and technologies that hybridize characteristic properties of microbial and OSC systems.
微生物生物电子学需要将微生物与电极连接起来。由此产生的非生物/生物平台为一系列技术提供了基础,包括能量转换和诊断分析。有机半导体(OSCs)提供了一种独特的策略来调节微生物系统与外部电极之间的界面,从而提高这些新兴技术的性能。在这篇综述中,我们探讨了该领域的最新进展,即有机半导体以及相关的电荷传输材料如何在微生物系统,更具体地说是细菌的背景下得到应用。我们首先研究细菌中的电化学通信模式以及电荷传输的生物学基础。接下来讨论为与细菌连接和研究而设计和合成的不同类型的合成有机材料,随后是用于评估微生物、合成和混合系统中传输的最常用表征技术。随后考察了一系列应用,包括生物传感器和能量转换系统。综述最后总结了目前已取得的成果,并提出了未来有机半导体生物电子材料和技术的设计方法,这些材料和技术融合了微生物和有机半导体系统的特性。